Исторический очерк биохимии
Рефераты по химии / Исторический очерк биохимииСтраница 5
Фосфорилированная глюкоза не способна проходить через цитоплазматическую мембрану и оказывается “запертой” в клетке. Таким образом, глюкозо – 6 – фосфат является центральным метаболитом углеводного обмена и занимает важное положение в интеграции ряда метаболических путей (гликолиз, глюкогинез, пентозофосфатный путь, гликогенолиз).
Обратный процесс дефосфорилирования глюкозы идёт только в трёх тканях, клетки которых способны транспортировать глюкозу в кровь, а именно ткани печени, эпителия почечных канальцев тонкого кишечника. Это становится возможным благодаря действию гидролитического фермента глюкозо – 6 – фосфатазы, который катализирует реакцию:
О регуляции активности этого фермента до сих пор известно мало, а следовательно, неясно, какие факторы предотвращают непрерывный цикл фосфорилирования и дефосфорилирования глюкозы.
В растительном мире огромные количества глюкозы образуется путём восстановления диоксида углерода в процессе фотосинтеза. В организме животных глюкоза непрерывно синтезируется в строго регулируемых реакциях из простых предшественников. Предшественниками могут быть: 1) пируват или лактат; 2) некоторые аминокислоты; 3) любой другой компонент, который в процессе катаболизма может превращён в пируват или один из метаболитов ЦТК.
Биосинтез глюкозы из неуглеводных предшественников носит название глюконеогенез, а пируват обуславливает вхождение в этот процесс. Как отмечалось выше, в процесс глюконеогенеза вовлекают ряд аминокислот, после превращения их в пируват или оксалоацетат. Также аминокислоты получили название глюкогенных. Из продуктов деградации триацилглицералов только глицерол может участвовать в глюконеогенезе путём превращения его в дегидроксиацетон ( метаболит гликолиза), а затем в глюкозу.
Подобно тому как гликолиз представляет собой центральный путь катаболизма глюкозы, в процессе которого она распадается до двух молекул пирувата, превращение последних в глюкозу составляет центральный путь глюконеогенеза. Таким образом, глюконеогенез в основном протекает по тому же пути, что и гликолиз, но в обратном направлении. Однако три реакции гликолиза ( глюкоза > глюкозо – 6 – фосфат; фруктозо – 6 – фосфат > фруктозо – 1,6 – дифосфат; фосфоеноилпируват > пируват) необратимы, и в обход этих реакций в глюконеогенезе протекают другие реакции с иной стехиометрией, катализируемые другими ферментами. Известны 4 фермента, катализирующие реакции глюконеогенеза и не принимающие участие в гликолизе: пируваткарбоксилаза, фосфоеноилпируваткарбоксилаза, фруктозо – 1,6 – диофосфотаза, глюкозо – 6 – фосфотаза.
Они локализованы преимущественно в печени, где и происходит главным образом глюконеогенез. Значительно менее интенсивно этот процесс идёт в корковом веществе почек.
После того как в мышцах истощается запас глюкогена, основным источником пирувата становится аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин – одну из глюкогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл называется циклом Кори (по имени его первооткрывателя). У цикла Кори две функции – сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза.
Энергетика обмена.
Обмен веществ (метаболизм) – это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Благодаря обмену веществ происходит расщепление и синтез молекул, входящих в состав клеток, образование, разрушение и обновление клеточных структур и межклеточного вещества . Например, у человека половина всех тканевых белков расщепляется и строится заново в среднем в течении 80 суток, белки печени и сыворотки крови наполовину обновляются каждые 10 суток, а белки мышц – 180, отдельные ферменты печени – каждые 2 – 4 часа. Обмен веществ неотделим от процессов превращения энергии: потенциальная энергия химических связей сложных органических молекул в результате химических превращений переходит в другие виды энергии, используемой на синтез новых соединений, для поддержания структуры и функции клеток, температуры тела, для совершения работы и так далее. Все реакции обмена веществ и превращения энергии протекают при участии биологических катализаторов – ферментов. У самых разных организмов обмен веществ отличается упорядочностью и сходством последовательности ферментативных превращений, несмотря на большой ассортимент химических соединений, вовлекаемых в обмен. В тоже время для каждого вида характерен особый, генетическизакреплённый тип обмена веществ, обусловленный условиями его существования.
Информация о химии
Альдер (Alder), Курт
Немецкий химик Курт Альдер родился в Германии, в Кенигсхютте (теперь это Хожув, Польша), неподалеку от Катовиц, где его отец, Йозеф Альдер, работал учителем. Мальчик получил начальное и среднее образование в местных школах. В конц ...
Клуг (Klug), Аарон
Английский физик и специалист по молекулярной биологии Аарон Клуг родился в Желвасе (Литва), в семье торговца скотом Лазаря Клуга и Беллы (Силиной) Клуг. Когда Аарону было два года, Клуги переехали в Дурбан (Южная Африка), куда се ...
Юри (Urey), Гарольд Клейтон
Американский химик Гарольд Клейтон Юри родился в Уолкертоне (штат Индиана), в семье Коры Ребекки (Рейноул) и Сэмуэла Клейтона Юри. Его отец, священник и школьный учитель, умер, когда мальчику было шесть лет, и мать Юри вышла замуж ...