Кинетические особенности реакции полиуретанирования
Рефераты по химии / Физическая химия полиуретанов / Кинетические
особенности реакции полиуретанированияСтраница 1
У мономеров с функциональными группами (гидроксильными и аминогруппами) атом водорода весьма подвижен и поэтому они активно участвуют в реакции полиприсоединения (например, при взаимодействии с изоцианатами) с образованием высокомолекулярных продуктов. В этом случае реакцию полиприсоединения следует рассматривать как поликонденсационный процесс, не сопровождающийся образованием низкомолекулярных продуктов. Поэтому состав звеньев полимера и мономера идентичен (в отличие от поликонденсации, сопровождающейся выделением низкомолекулярного продукта, когда составы различаются).
Пример: получение полиуретана (полимер, содержащий в основной цепи уретановые группы –HN–CO–O–) из диазоцианата и диолов путём полиприсоединения, когда подвижный атом водорода гидроксильной группы диолов мигрирует и присоединяется к атому азота изоцианатной группы:
В приведенной реакции активные функциональные группы, как и при поликонденсации, расходуются при синтезе полимера, а в образующейся цепи звенья содержат новые неактивные функциональные группы.
Линейные кристаллизующиеся полиуретаны характеризуются высокой жесткостью и небольшим водопоглощением и применяются в качестве пластмасс. Сшитые полиуретаны применяют в качестве эластомеров, пенопластов, для изготовления лаков, эмалей, волокон, клеёв, герметиков и др.
При изучении структуры полиуретанов необходимо иметь в виду кинетические особенности реакции. Диизоцианаты в зависимости от их химического строения обладают различной реакционной способностью - с наименьшей скоростью вступают в реакцию алифатические диизоцианаты, в то время, как ароматические, особенно содержащие электроноакцепторные заместители (нитро-, нитрильные, галоидные группы), обладают повышенной реакционной способностью.
Реакционная способность изоцианатной группы может быть объяснена на основе ее электронной структуры:
Возможные резонансные структуры показывают, что наивысшая плотность электронов наблюдается на кислороде, а наименьшая на углероде, так что наибольший отрицательный заряд имеет кислород, наибольший положительный - углерод; азот имеет промежуточный (средний) общий отрицательный заряд [40]. Реакции изоцианатов с соединениями, содержащими активный водород, протекает путем воздействия нуклеофильного центра на электрофильный углерод в изоцианатной группе:
Тот факт, что соединения с активным атомом водорода действуют в этой реакции как донор электронов, а не как донор водорода подтверждается влиянием электрофильных групп в этих соединениях. Эти группы способны отнимать электроны от активного водорода, обедняя его как донора электронов и уменьшая скорость реакции с изоцианатом. Электроноакцепторные заместители в молекуле аминов понижают основность азота, делая его более слабым донором электронов:
Напротив, электродонорные заместители увеличивают основность азота в аминогруппе, увеличивая, тем самым реакционноспособнось амина в отношении изоцианата.
При введении электрофильных групп в изоцианат мы наблюдаем противоположный эффект, так как в этом случае положительный заряд атома углерода в изоцианатной группе увеличивается, облегчая таким образом атаку этого атома нуклеофильным агентом и увеличивая скорость реакции:
Помимо электронных эффектов заместителей важную роль играют стерические факторы. Реакции ароматических диизоцианатьв замедляются громоздкими заместителями, находящимися в ортоположении, алифатических, разветвленными или большими по размерам заместителями расположенными в близи реакционного центра. Стерические эффекты оказывают влияние не только на реакционную способность изоцианатов и соединений с подвижным атомом водорода, но также и на эффективность катализатора. Поскольку катализатор должен приблизиться к реакционному центру так же близко, как и сам реагент. Легкость и степень этого приближения будет определяться соотношением размеров молекул катализатора и реагентов.
Информация о химии
Хофман (Hoffmann), Роальд
Американский химик Роалд Хофман (при рождении Сафран), названный в честь норвежского исследователя Роальда Амундсена, родился в г. Злоцзове в Польше (ныне г. Золочев, Украина, СССР), в семье инженера Хиллеля Сафрана и школьной учи ...
Вант-Гофф (van't Hoff), Якоб Генрик
Нидерландский химик Якоб Генрик Вант-Гофф родился в Роттердаме, в семье врача Якоба Генрика Вант-Гоффа. По настоянию родителей Вант-Гофф начал изучать инженерное дело в Политехнической школе в Дельфте. В ней Вант-Гофф за два года ...
Rb — Рубидий
РУБИДИЙ (лат. Rubidium), Rb, химический элемент I группы периодической системы Менделеева, атомный номер 37, атомная масса 85,4678. Относится к щелочным металлам. Свойства: серебристо-белый металл пастообразной консистенции. Плот ...