Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол
Рефераты по химии / Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуолСтраница 8
Рис. 1.13. Схема устройства ситчатой колонны: 1 – корпус; 2 – ситчатая тарелка; 3 – переливная трубка; 4 – стакан.
Пар проходит через отверстия тарелки (см. рис. 1.14) и распределяется в жидкости в виде мелких струек; лишь на некотором расстоянии от дна тарелки образуется слой пены и брызг – основная область массообмена и теплообмена на тарелке.
Рис. 1.14. Схема работы ситчатой тарелки.
В определенном диапазоне нагрузок ситчатые тарелки обладают большим к.п.д., чем колпачковые. Однако допустимые нагрузки по жидкости и пару для ситчатых колонн относительно невелики. При слишком малой скорости пара (около 0,1 м/сек) происходит просачивание жидкости через отверстия тарелки и в связи с этим резкое падение к.п.д. тарелки.
Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточными для преодоления давления слоя жидкости на тарелке и должны препятствовать ее стекания через отверстия.
Проскок жидкости у ситчатых тарелок возрастает с увеличением диаметра тарелки и отклонением ее от строго горизонтального положения. Поэтому диаметр и число отверстий следует подбирать так, чтобы жидкость удерживалась на тарелках и не увлекалась механически паром. Обычно диаметр отверстий ситчатых тарелок принимают равным 0,8 – 3 мм.
Ситчатые колонны эффективно работают только при определенных скоростях ректификации, и регулирование режима их работы затруднительно. Кроме того, ситчатые тарелки требуют весьма тщательной горизонтальной установки, так как иначе пары будут проходить через часть поверхности сетки, не соприкасаясь с жидкостью.
Ситчатые тарелки уступают колпачковым по допустимому верхнему пределу нагрузки; при значительных нагрузках потеря напора в них больше, чем у колпачковых.
При внезапном прекращении подвода пара или значительном снижении его давления тарелки ситчатой колонны полностью опоражниваются от жидкости, и требуется заново запускать колонну для достижения заданного режима ректификации.
Очистка, промывка и ремонт ситчатых тарелок производятся относительно удобно и легко.
Чувствительность к колебаниям нагрузки, а также загрязнениям и осадкам, которые образуются при перегонке кристаллизующихся веществ и быстро забивают отверстия тарелки, ограничивают область использования ситчатых колонн; их применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки).
Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром.
2. Теоретические основы расчета тарельчатых ректификационных колонн
Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический (графический) и аналитический. Существуют некоторые допущения, мало искажающие действительный процесс, но существенно упрощающие его анализ и расчет:
1.молярные теплоты испарения компонентов при одной и той же температуре приблизительно одинаковы, поэтому каждый кмоль пара при конденсации испаряет 1 кмоль жидкости. Следовательно, количество поднимающихся паров в любом сечении колонны одинаково;
2.в дефлегматоре не происходит изменения состава пара. Состав пара, уходящего из ректификационной колонны, равен составу дистиллята;
3.при испарении жидкости в кипятильнике не происходит изменения ее состава;
4.теплоты смешения компонентов разделяемой смеси равны 0.
2.1 Материальный баланс ректификационной колонны
Согласно схеме на рис. 2.15 в колонну поступает F кмоль исходной смеси, состав которой хF в мольных долях низкокипящего компонента. Сверху из колонны удаляется G кмоль паров, образующих после конденсации флегму и дистиллят. Количество получаемого дистиллята D кмоль, его состав хD в мольных долях низкокипящего компонента. На орошение колонны возвращается флегма в количестве Ф кмоль, причем ее состав равен составу дистиллята (хф=xD в мольных долях). Снизу из колонны удаляется W кмоль остатка состава xw в мольных долях низкокипящего компонента. Тогда уравнение материального баланса колонны имеет вид:
Ф+F=G+W (2.14)
Поскольку G=D+Ф, то
F=D+W (2.15)
Соответственно по низкокипящему компоненту материальный баланс имеет вид:
FxF=DxD+WxW (2.16)
Концентрации питания, дистиллята и кубового остатка в мольных долях рассчитываются по формулам:
Питание:
, где (2.17)
– мольные массы бензола и толуола.
Дистиллят:
(2.18)
Кубовый остаток:
Информация о химии
Требования к объему знаний и умений о химическом языке в школьном курсе химии
В процессе формирования умений пользоваться химическим языком содержание знаний о языке химии должно отражать три его стороны: · семантическую, направленную на раскры ...
Браун (Braun), Карл Фердинанд
Немецкий физик и изобретатель Карл Фердинанд Браун родился в г. Фульда, в семье Конрада Брауна и Франциски (Геринг) Браун. Окончив местную гимназию, он учился в Марбургском университете, а затем выполнял докторскую работу по физик ...
Fr — Франций
ФРАНЦИЙ (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, относится к щелочным металлам. Свойства: радиоактивен, наиболее устойчив изотоп 223Fr (период по ...