Инжекционные процессы в электрохимических системах с твердым катионпроводящим электролитом
Рефераты по химии / Инжекционные процессы в электрохимических системах с твердым катионпроводящим электролитомСтраница 5
В главе 7 описаны результаты экспериментального исследования обмена ионами Na+ между твердыми электролитами и оксидными электродами. Методом импеданса показано, что в эквивалентной схеме ячейки имеются две параллельные цепочки, одна из которых соответствует переносу ионов натрия в объеме зерна и через контакт соседних зерен, а вторая - переносу Na+ по гидратированным границам зерен. Обратимость электродной реакции определяется переносом заряда по гидратированным границам.
Обнаружено, что в случае ТЭЛ, межзеренные границы которых не способны к гидратации, граница ТЭЛ/8п02 является, блокированной. В случае ТЭЛ, границы которых способны к гидратации, обратимость границы электрод/электролит по основным носителям заряда возрастает по мере возрастания влажности окружающей среды.
В восьмой главе обсуждаются результаты исследования процессов инжекции ионов из твердого электролита в электродный материал в присутствии электрохимически активных газов.
Исследовано поведение границ Ме02 / Н+-ТЭЛ на воздухе в присутствии водорода и монооксида углерода. Показано, что потенциал границы РЬО/ГЭЛ практически не зависит от состава твердого электролита и окружающей среды. Граница БпОг/КГ-ТЭЛ малочувствительна к изменению концентрации Н2 и СО в воздухе. Это связано с отсутствием хемосорбции этих газов. Как показывают эксперименты по адсорбции, введение в состав Sn02 платины практически не влияет на адсорбцию Н2, но резко увеличивает количество хемосорбированного СО и катализирует процесс окисления СО на поверхности. Регулируя состав Sn02, легко регулировать чувствительность границы к СО. На основании проведенных исследований предложена модельная электрохимическая система РЬ02/ Н+-ТЭЛ / (Sn02, Pt), способная быстро и селективно откликаться на изменение содержания СО в воздухе даже в присутствии таких газов-восстановителей, как Н2 и углеводороды (рис.9).
Исследовано поведение границ Ме02/ №+-ТЭЛ на воздухе в присутствии углекислого и сернистого газов. Показано, что системы, блокированные к переносу ионов Na+, не чувствительны к изменению состава газовой фазы. Сам потенциал неустойчив и чувствителен к методу изготовления границы. Системы с ТЭЛ, способными к гидратации, способны откликаться на содержание кислых газов в воздухе. Добиться селективности этих систем к отдельному газу оказалось возможным, изменяя кислотность поверхности электродов. Введение в состав Sn02 ионов, повышающих кислотность поверхности (V, Nb, Та), приводит к понижению чувствительности системы к С02 (рис. 10).
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
Впервые измерены токи эмиссии из твердых электролитов Na20.11Al203 и Na5Gd0,9Zr0,iSi4O2 и контактная разность потенциалов между натрием и твердыми электролитами типа Na5MSi402, где M=Y, Eu, Gd, Yb в интервале температур от 230 до 400°С. Работа выхода иона Na+ из твердого электролита меньше, чем из чистого металла.
Впервые исследованы процессы ионной инжекции ионов серебра и меди в твердофазных системах с использованием твердых электролитов. Показано, что токи обмена границы с интеркалатным электродом более чем на порядок превышают токи обмена с металлическим электродом.
Методом квантово-химического моделирования показана возможность миграции однозарядных катионов по поверхности рутилоподобных оксидов. Показано, что барьеры на пути миграции минимальны для катионов Na+. Установлена возможность перехода поверхностной миграции протона в объемную. Показано, что для Sn02 преобладает поверхностная миграция протона, а для Pb02 - объемная.
Экспериментально обнаружено возникновение протонной проводимости на поверхности диоксида олова. Показано, что величина протонной проводимости определяется количеством адсорбированной воды и температурой, Установлены условия, при которых ионная составляющая проводимости Sn02 превышает 95% от общей проводимости.
Информация о химии
Исследование эффективности методической системы проблемного подхода к обучению химии с применением школьного химического эксперимента
Апробация материалов экспериментов, созданных для использования в системе проблемного обучения, проводилась на базе МОУ Лицей информационных систем и технологий № 73 г. Пензы. Исследование эффективности методической ...
Уилкинс (Wilkins), Морис Хьюг Фредерик
Английский биофизик Морис Хьюг Фредерик Уилкинс родился в Понгароа (Новая Зеландия). Его мать, Эвелин (Виттейкер) Уилкинс, эмигрировала из Ирландии. Отца, Эдгара Генри Уилкинса, школьного доктора, очень привлекала исследовательска ...
S — Сера
СЕРА (лат. Sulfur), S, химический элемент с атомным номером 16, атомная масса 32,066. Химический символ серы S произносится «эс». Природная сера состоит из четырех стабильных нуклидов: 32S (содержание 95,084% по массе) ...