Инжекционные процессы в электрохимических системах с твердым катионпроводящим электролитом

Рефераты по химии / Инжекционные процессы в электрохимических системах с твердым катионпроводящим электролитом
Страница 1

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы.

Ионика твердого тела, возникшая на стыке физики и химии твердого тела и электрохимии в конце 60-х годов, изучает процессы ионного транспорта в твердом теле. До последнего времени эта наука занималась в основном процессами переноса зарядов в монофазных системах. Однако в последнее время все больший интерес исследователей направлен на изучение граничных процессов.

Исследование процессов обмена основными носителями заряда между электронным и ионным проводниками, механизма переноса ионов в объеме и по поверхности полупроводниковых фаз имеют важное фундаментальное и практическое значение. Это связано как с необходимостью понимания закономерностей процессов ионного переноса в твердых телах, так и с практическим использованием процессов ионной инжекции для получения новых функциональных материалов и электрохимических систем с заданными свойствами (каталитических, сенсорных и т.п.).

Цель работы.

Изучение закономерностей протекания процессов ионной эмиссии из твердого электролита, инжекции ионов в электронный проводник, ионного обмена между твердым электролитом и электронным проводником, переноса ионов в электронном проводнике.

Научная новизна.

Впервые измерены токи эмиссии из твердых электролитов (ТЭЛ) 1,Ша20.11А12Оз и Na5Gdo.9Zro,iSi4Oi2 и контактная разность потенциалов между натрием и твердыми натрийпроводящими электролитами. Показано, что работа выхода иона Na+ из твердого электролита меньше, чем из чистого металла. Впервые исследованы процессы ионной инжекции ионов серебра и меди в твердофазных системах с использованием твердых электролитов. Показано, что токи обмена границы с интеркалатным электродом более, чем на порядок превышают токи обмена с металлическим электродом. Впервые проведено квантово-химическое моделирование миграции однозарядных катионов по поверхности рутилоподобных оксидов. Показано, что барьеры на пути миграции минимальны для катионов Na . Установлена возможность перехода поверхностной миграции протона в объемную. Экспериментально обнаружено возникновение протонной проводимости на поверхности диоксида олова и найдены условия, при которых ионная составляющая проводимости БпОг превышает 95% от общей проводимости. В распределенных структурах CsHS04 - Sn02 обнаружен максимум протонной и электронной составляющих проводимости. При изучении процессов обмена носителями заряда между натриевыми твердыми электролитами и полупроводниковыми оксидами обнаружено, что электрохимическая активность границы Sn02/Na+-T3JI по отношению к СОг и СО определяется склонностью „поверхности. ТЭЛ к гидратации.

Практическая значимость.

На основании изучения закономерностей ионного переноса между ионпроводящей и полупроводниковой фазами получены электрохимические системы, способные селективно изменять свою ЭДС при изменении концентраций Нг, СО и СОг в газовой фазе.

Разработаны методы электрохимического синтеза инжекционных электродов на основе дисульфида титана. Показана возможность их использования в качестве обратимых электродов в электрохимических устройствах различного типа. На основании полученных интеркалатных соединений созданы твердотельный переключатель и датчик влажности.

Апробация работы.

Результаты работы докладывались на 6-й Всесоюзной конференции по электрохимии (Москва), 8-й Всесоюзной конференции по физической химии и электрохимии ионных расплавов и твердых электролитов (Ленинград, 1983), 5-й Украинской конференции по электрохимии (Ужгород, 1990), Всесоюзной конференции «Микроэлектронные датчики в машиностроении», (Ульяновск, 1990), 4-й Конференции «Сенсор-91» (Ленинград, 1991), 3-м и 5-м Международным симпозиумах «Системы с быстрым ионным переносом» (Хольцау-Германия, 1991, Варшава, 1998), 1-й Европейской конференции «Ионика твердого тела» (Греция, 1994).

Страницы: 1 2 3 4 5 6

Информация о химии

Zn — Цинк

ЦИНК (лат. Zincum), Zn, химический элемент II группы периодической системы Менделеева, атомный номер 30, атомная масса 65,39. Свойства: серебристо-белый металл; плотность 7,133 г/см3, tпл 419,5 °С. На воздухе покрывается защи ...

No — Нобелий

НОБЕЛИЙ (лат. Nobelium), No, искусственно полученный радиоактивный химический элемент III группы периодической системы, атомный номер 102, относится к актиноидам. История: первые надежные сведения об изотопах 251No и 256No получе ...

Зоммерфельд (Sommerfeld), Арнольд Иоганн Вильгельм

Немецкий физик и математик Арнольд Зоммерфельд родился 5 декабря 1868 г. в Кёнигсберге (ныне Калининград). Окончил Кёнигсбергский университет (1891). В 1891–1897 гг. работал в Гёттингенском университете. Профессор математики ...