Интерполиэлектролитные комплексы
Рефераты по химии / Интерполиэлектролитные комплексыСтраница 3
Растворимые ИПЭК являются продуктами незавершенной реакции. При этом свободные звенья исходных полиэлектролитов, не вступившие в межцепные солевые взаимодействия, выполняют функцию гидрофильных фрагментов, способствуя удерживанию частиц ИПЭК в растворе. Установление факта существования растворимых ИПЭК открыло перед исследователями новый спектр перспективных областей применения, характерных именно для семейства растворимых ИПЭК и касающихся, в первую очередь, биомиметики, биотехнологии и медицины.
Строение ИПЭК
Важным этапом исследования ИПЭК было определение их строения. Поскольку растворимые ИПЭК в водных растворах представляют собой индивидуальные устойчивые частицы, для их изучения в водных растворах были использованы такие методы исследования растворов полимеров, как светорассеивание, турбидиметрия, вискозиметрия, гель-хроматография, ультрацентрифугирование и другие. На основании изучения нерастворимых ИПЭК в твердой фазе принято, что в них обе взаимодействующие полимерные цепи располагаются параллельно друг другу и образуют двухтяжные лестничные структуры. Такие структуры представляют собой совокупность кооперативно взаимодействующих противоположно заряженных звеньев цепи, характеризуются повышенной жесткостью и высокой гидрофобностью и приводят к выделению их из раствора. Растворимые ИПЭК представляют собой блок-сополимеры, в которых сочетаются достаточно протяженные гидрофобные и гидрофильные фрагменты.
Явление агломерации комплексообразующих молекул в растворе ИПЭК аналогично процессам мицелообразования. Степень агломеризации мало чувствительна к изменению молекулярных масс ЛПЭ, но определяется соотношением количества звеньев ЛПЭ, включенных в гидрофильные и гидрофобные блоки. Процессы агломеризации и распада агломератов ИПЭК можно контролировать путем изменения состава полимерного комплекса. Существенное влияние на эти процессы оказывает степень ионизации звеньев ЛПЭ, включенных в однотяжные гидрофильные блоки. Если ЛПЭ – слабый полиэлектролит, то уменьшение степени ионизации приводит к прогрессирующей агломеризации частиц растворимого ИПЭК вплоть до их выделения из раствора. Именно поэтому ИПЭК, в которых в роли ЛПЭ выступает поликарбоновая кислота, растворимы в щелочной среде. Если ЛПЭ – полиоснование, поликомплекс приобретает способность растворяться лишь в кислой среде. Степень агломеризации зависит и от степени связывания противоионов со свободными участками ЛПЭ. Помимо состояния окружающей среды способность к агломеризации определяется химическим строение ЛПЭ и БПЭ. Распад агломератов ИПЭК наблюдают при введении свободных ЛПЭ. Фазовое разделение в водных растворах ИПЭК наблюдают также при введении в раствор низкомолекулярного электролита. Низкомолекулярные соли, являющиеся конкурентами в реакции между полиэлектролитами, приводят к разрушению межмолекулярных солевых связей, что сопровождается перегруппировкой участков ЛПЭ и БПЭ в частицах растворимых ИПЭК и образованием очень компактных частиц, имеющих состав, близкий к стехиометрическому. Именно из таких частиц образуются нерастворимые ИПЭК в водно-солевых растворах. Тогда в растворе остаются практически свободные цепи ЛПЭ. Причиной такого фазового разделения является диспропорционирование частиц растворимого ИПЭК, протекающего по механизму полиионного обмена в гомогенных растворах под действием низкомолекулярного электролита.
Таким образом, образование и изменение состава ИПЭК в растворах, обусловленное обратимостью интерполимерной реакции , носит сложный характер и определятся многими факторами, к которым следует отнести природу полиэлектролитов, их молекулярную массу, ММР, ионную силу раствора. Изучение строения ИПЭК требует широкого использования всего известного арсенала методов исследования полимеров.
Информация о химии
Электрохимическое растворение платины в ионной жидкости
Драгоценные металлы, в особенности платина, являются катализаторами многих промышленно значимых реакций. Одной из наиболее динамично развивающихся областей практического применения платины являются некоторые типы топливных ячеек. ...
Химический элемент хром
Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хрома имеет яркую окраску, причем ...
Uup — Ununpentium (Унунпентиум)
Унунпентиум (Унунпентий) (лат. Ununpentium), Uup, химический элемент V группы периодической системы, атомный номер 115, атомная масса [288], наиболее устойчивый изотоп 287Uup. Свойства: радиоактивен. Металл, повидимому находится ...
