Методы совмещения наполнителя со связующим
Рефераты по химии / Методы совмещения наполнителя со связующимСтраница 6
Сравнительные характеристики материалов на основе СВМПЭ и каолина (компонор 3-6-3), полученных полимеризационным наполнением, ненаполненного СВМПЭ и фторопласта (F-4)
Композиции Компонора с содержанием каолина 30-50 масс. % обладают высокой износостойкостью ( в 2-10 раз выше по сравнению со СВМПЭ ), высокой ударной прочностью и жёсткостью ( в 2-3 раза выше по сравнению со СВМПЭ ); жёсткость Компонора приближается к жёсткости, характерной для полиамидов, ацетатных смол и других пластиков.
Компонор также обладает высокой радиационной и химической стойкостью по отношению к кислотам, щелочам и многим органическим растворителям. Повышенная влажность не влияет на его свойства. Компонор может использоваться в широком диапазоне температур – от очень низких до 100 0С, отличается повышенными антиадгезионными и антикоррозионными свойствами, пониженными хладотекучестью, ползучестью и коэффициентом трения.
Методом полимеризационного наполнения получены теплозащитные материалы при содержании вспученного перлита более 87 мас. % имеющие кислородный индекс 28%. В отличие от аналогичных материалов, использующих реактопласты, они нетоксичны. Материалы обладают также звукоизоляционными свойствами. Плотность материала на основе полимеризационно наполненного СВМПЭ и вспученного перлита можно регулировать в зависимости от плотности исходного перлита и давления при формовании (табл.6).
Таблица 6
Свойства теплоизоляционных материалов на основе СВМПЭ и вспученного перлита
Содержание перлита, мас. % |
Плотность, кг/м3 |
Прочность при сжатии при10% деформации, МПа |
Прочность при сжатии, МПа |
Деформация, % |
Модуль упругости, МПа |
Теплопроводность, Вт/мК |
87 |
180 |
0,57 |
1,07 |
48 |
35 |
─ |
86 |
160 |
0,32 |
0,40 |
28 |
28 |
0,05 |
85 |
140 |
0,30 |
0,40 |
21 |
24 |
0,06 |
Технология полимеризационного наполнения позволила создать композиционный материал, сочетающий теплопроводящие и диэлектрические свойства. Содержание дисперсного алюминия в композите составляет 27-53 об.% при равномерном распределении его в матрице. Разработанные полимеризационно наполненные композиционные материалы обладают значительно более высоким удельным электрическим сопротивлением по сравнению с механическими смесями при одинаковых составах. Теплопроводность увеличивается с повышением содержания алюминия в отличие от механических смесей.
В противоположность алюминию введение графита в полипропилен полимеризационным методом позволяет получать композиты с высокой электропроводимостью: удельное электрическое сопротивление 105 ÷ 10-2 Ом/см при содержании графита 10 ÷ 70 мас. %. Полученные материалы не разрушаются при повторном температурном изменении от 4 до 298 К и имеют положительный температурный коэффициент сопротивления. Он равен 10-4 град-1 в интервале 300 ÷ 400К.
Информация о химии
Петтенкофер (Pettenkofer), Макс фон
Немецкий врач и естествоиспытатель, основоположник экспериментальной гигиены Макс фон Петтенкофер родился в Лихтенхейме, Нижняя Бавария. С 1837 г. учился на естественном, затем на медицинском факультете Мюнхенского университета, ...
Ra — Радий
РАДИЙ (лат. Radium), Ra, химический элемент II группы периодической системы, атомный номер 88, атомная масса 226,0254; относится к щелочноземельным металлам. Свойства: радиоактивен; наиболее устойчивый изотоп 226Ra (период полура ...
Sr — Стронций
СТРОНЦИЙ (лат. Strontium), Sr, химический элемент II группы периодической системы, атомный номер 38, атомная масса 87,62, относится к щелочноземельным металлам. Свойства: серебристо-белый металл; плотность 2,63 г/см3, tпл 768 &de ...