Механизм формирования вторичных месторождений меди и цинка
Рефераты по химии / Механизм формирования вторичных месторождений меди и цинкаСтраница 4
Теперь представим себе, что кислородные подземные воды, содержащие медь, никель, кобальт, цинк, свинец и другие металлы, двигаются по водоносному горизонту, в нижней части которого имеется восстановительный сероводородный барьер [16]. Однако количество ионов S²- и HS-, необходимых для осаждения металлов, в каждый данный момент меньше, чем количество протекающих металлов (имеются в виду активные концентрации).
В этом случае будут осаждаться сульфиды не всех металлов; осуществится только часть возможных реакций в соответствии с принципом торможения. Примем, что содержание сульфидного иона (S²-) составляет 10-10 моль/л (3,2·10-9 г/л) и реакция осаждения имеет следующий характер:
Cu²+ + S²- →CuS,
Pb²+ +S²- →PbS
Содержание металлов в водах, поступающих к барьеру, примем близким к фоновым, т.е. 1·10-6 - n·10-8 моль/л (n·10-5 - n·10-6 г/л).
Для металлов мало различающихся по реакции осаждения сульфидов (Pb, Zn, Ni, и Co) и величине изобарного потенциала, последовательность осаждения может зависеть от исходных концентраций металлов в водах. Следовательно, в зависимости от концентрации этих металлов в водах, при дефиците сероводорода, сначала может осаждаться или свинец или цинк [11].
Карбонатный барьер. Возникает в местах встречи карбонатных вод с водами другого типа, содержащими значительное количество Cu, Zn, Са, Sr, Ba. Примером может служить барьер на стыке глубинных хлоридных рассолов с гидрокарбонатно-натриевыми водами [13]. Это явление может происходить в опущенном крыле артезианского бассейна, где близко от поверхности залегают глубинные воды. При этом происходят обменные реакции, в ходе которых из вод осаждаются карбонаты щелочноземельных металлов.
Sr²+│ SrCO3
хлоридный рассол± CO²+3 – инфильтрующихся вод→
Ca²+│ CaCO3
В результате этого процесса возникают эпигенетическая кальцитизация; образуются эпигенетические бариты, целестины, стронцианиты. Смещение глубинных хлор-кальциевых вод с приповерхностными может быть обусловлено также тектоническими поднятиями [2]. На карбонатном геохимическом барьере сформировались малахитовые месторождения окисленных медных руд на Среднем Урале (малахит – (Cu2CO3(OH)2) и окисленные месторождения цинка в Канаде и США (Теннеси, Миссури) (смитсонит – ZnCO3, гидроцинкит – Zn5(CO3)2(OH)6).
Щелочной барьер. Этот барьер возникает на участках резкого повышения рН, в частном случае в местах смены кислых вод нейтральными или щелочными (но также и в кислой области при смене сильнокислых вод слабокислыми). Характерным примером щелочного барьера служат многие контакты изверженных и осадочных бескарбонатных пород с известняками. Такой же барьер возникает при формировании зоны окисления сульфидных месторождений. Щелочной барьер имеет особенно большое значение для концентрации большинства металлов, так как интенсивность их миграции в кислой области значительно выше, чем в щелочной [1].
Кислые воды, дренирующие сульфидные месторождения, ультраосновные и другие силикатные породы, содержат значительные количества металлов. При попадании этих вод в известняки рН резко повышается, и металлы выпадают из раствора в виде вторичных минералов, выполняющие карстовые полости или замещающих известняки [9].
Таким путем образовались никелевые месторождения так называемого Уфалейского типа на Среднем Урале. Кислые воды, дренировавшие в районе Уфалея массивы серпентинитов, содержали значительные количества никеля. На контакте с известняками эти воды резко изменяли свой состав, рН их повышался, и никель выпадал из раствора, образуя рудные тела в зоне контакта или в карстовых полостях.
Информация о химии
Бэкон (Bacon), Роджер
Английский философ и естествоиспытатель Роджер Бэкон родился в Илчестере (графство Сомерсет). Получил образование в Оксфордском и Парижском университетах (магистр искусств, 1241). До 1247 г. преподавал в Парижском университете. Во ...
Fr — Франций
ФРАНЦИЙ (лат. Francium), Fr, химический элемент I группы периодической системы Менделеева, атомный номер 87, атомная масса 223,0197, относится к щелочным металлам. Свойства: радиоактивен, наиболее устойчив изотоп 223Fr (период по ...
Lu — Лютеций
ЛЮТЕЦИЙ (лат. Lutetium), Lu, химический элемент III группы периодической системы, атомный номер 71, атомная масса 174,967, относится к лантаноидам. Свойства: серебристо-белый металл. Плотность 9,849 г/см3, tпл 1660 °С. Назва ...