Влияние состава гибких сегментов на структуру и свойства полиуретанов

Рефераты по химии / Физическая химия полиуретанов / Влияние состава гибких сегментов на структуру и свойства полиуретанов
Страница 3

Характер изменения размеров жестких доменов (судя по величине большого периода) и выраженность дискретного максимума позволяют полагать, что гибкие ОТМГ-блоки, накапливаясь в приповерхностных и переходных слоях жестких доменов, разрыхляют их и тем самым способствуют ослаблению взаимодействия между жесткими блоками и сложно-эфирными фрагментами. Последние переходят в междоменное пространство, где могут принимать участие в процессах кристаллизации. Жесткие домены, сжимаясь, выталкивают из своей среды неполярные ОТМГ-блоки, восстанавливают свои размеры, но уже обладают более совершенной упаковкой. Это предположение следует из характера изменения большого периода полимеров ПУ-11 — ПУ-8. Однако когда доля ОТМГ-блоков в гибкой компоненте ПУ достигает 40 вес.%, происходит скачкообразное ухудшение характеристик структуры ПУ-7 (рис. 3, кривая 5). В исходных смесях олигоэфиров при этой концентрации компонентов происходило растворение в ОТМГ аморфной фазы ОБГА, при этом система переходила в состояние, когда основной структурой композиции являлась структура простого олигоэфира.

По-видимому, этот переход от одной доминирующей структуры к другой и предопределяет трудности в возникновении и обособлении кристаллической структуры ПУ, о чем свидетельствуют результаты калориметрических исследований. Согласно этим результатам, содержание простого олигоэфира ~20 вес.% в составе гибких блоков приводит к тому, что возникновение отдельной кристаллической фазы в составе ПУ становится процессом вероятностным. Этот результат является неожиданным, поскольку кристаллизация гибких блоков из аморфизованного состояния наблюдается на термограммах нагревания ПУ, содержащих 20 и 10 вес.% ОБГА-блоков в гибкой фазе сегментированного ПУ.

Совсем иной характер влияния на формирование структуры ПУ оказывает введение в состав гибкоцепной фазы олигоэфирных блоков ОБГА, т. е. блоков с повышенными способностями к кристаллизации и физическому взаимодействию с жесткими сегментами.

На рис 3, б приведено семейство кривых малоуглового рассеяния рентгеновых лучей на образцах ПУ, в гибкой составляющей которых доля ОБГА-блоков изменялась от ф2=0 до 0,6. В данном интервале изменения доли ОБГА в гибкой составляющей структура ПУ претерпевает три существенно различных состояния, характеризующихся степенью гетерогенности, плотностью упаковки и размерами жестких доменов.

Последовательное рассмотрение изменения характера рассеяния рентгеновых лучей образцами ПУ, в которых монотонно возрастает доля полярного кристаллизующегося компонента, позволяет утверждать, что изменения в ПУ-1 — ПУ-3 обусловлены взаимодействием ОБГА-блоков с жесткими доменами. Это утверждение основывается на том, что характер рассеяния изменяется в области углов 29=20—50', тогда как спад интенсивности на кривой рассеяния (20=50—70') остается неизменным.

Резкое изменение интенсивности рассеяния рентгеновых лучей на образце ПУ-4 (рис. 3, б, кривая 4) свидетельствует о качественных изменениях структуры этого полимера, когда доля ОБТА-сегментов достигла 30 вес.%. Последующее увеличение содержания ОБГА в олигоэфирной фазе оказывает воздействие на структуру ПУ (кривые 5—7), но это воздействие обусловлено усилением межмолекулярного взаимодействия различными составляющими структуры ПУ, а следовательно, приводит к понижению ее гетерогенности. Как следует из рис. 3, б (кривая 7), наименьшая гетерогенность достигается в полимере ПУ-7.

Результаты калориметрических исследований, согласно которым Тс гибких и жестких сегментов (рис. 1, кривые 4, 5) в ПУ-7 достигают соответственно максимума и минимума своих значений в исследованном ряду полимеров, наряду с данными малоугловой рентгенографии позволяют утверждать, что соотношение олигоэфиров ОБГА-2000: ОТМГ-1000= =0,6:0,4 приводит к образованию «эвтектики» фаз данного сегментированного полимера. В свою очередь область соотношения олигоэфиров ОБГА-2000 : ОТМГ-1000=20 : 80 является противоположной по свойствам рассмотренной выше. В этой области составов в наибольшей степени реализуется микрофазовое расслоение, вследствие чего полимер ПУ-3 характеризуется наиболее низкой в данном ряду ПУ температурой стеклования гибких блоков (Тс гб=-62°) и высокой плотностью упаковки всех структурных составляющих.

Страницы: 1 2 3 4

Информация о химии

Np — Нептуний

НЕПТУНИЙ (лат. Neptunium), Np, химический элемент III группы периодической системы, атомный номер 93, атомная масса 237,0482, относится к актиноидам. Свойства: серебристо-белый металл; плотность 20,45 г/см3, tпл 639 °С. Радио ...

Авогадро (Avogadro), Амедео

9 августа 1776 г. – 9 июля 1856 г. Амедео АвогадроИтальянский физик и химик Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето родился в Турине, в семье чиновника судебного ведомства. В 1792 г. окончил юридически ...

K — Калий

КАЛИЙ (лат. Kalium), K (читается «калий»), химический элемент с атомным номером 19, атомная масса 39,0983. Калий встречается в природе в виде двух стабильных нуклидов: 39К (93,10% по массе) и 41К (6,88%), а также одно ...