Исследование твердых электролитов

Рефераты по химии / Исследование твердых электролитов
Страница 23

Рис.1. Подвижные положительные ионы серебра, как аквалангисты, легко перемещаются в пространстве между рифами - атомами иода (сферы) - в кристалле AgI.

Хорошим примером служит структура модельного кристалла AgI (рис.1). Кристаллический каркас "держат" анионы иода, а два катиона серебра могут размещаться по 12 тетраэдрическим позициям элементарной ячейки. Именно для такой ажурной структуры, в которой нарушен дальний порядок для атомов одного типа, было введено наглядное (может быть, не совсем удачное) понятие "квазирасплавленная подрешетка", и считалось, что жесткая анионная подрешетка находится в "катионном расплаве".

Подвижные частицы относительно свободно перемещаются по всему объему кристалла, за исключением той его части, которая занята ионами неподвижного остова. Поэтому здесь более разумно говорить не об "ионном расплаве", а о существовании в матрице кристалла "проводящего пространства". Такое качественное рассмотрение находит подтверждение в полиэдрическом представлении одной из подрешеток кристалла (см., например, рис.2).

Рис.2. Кристаллическая структура Na2TiGeO5: выделены слои из жестко связанных тетраэдров [GeO4] и пирамид [TiO5]. В пространстве между слоями могут свободно перемещаться подвижные ионы.

Растущую потребность в суперионных материалах - как новых соединений, так и известных в ином качестве (газоплотная керамика, пленочные покрытия, наноструктурные системы) - нельзя удовлетворить, ограничиваясь лишь полуэмпирическими подходами и классическими методами синтеза. Решение этой сложной проблемы возможно лишь в случае, если опираться на фундаментальные закономерности, установленные при изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики или пленочного покрытия. И здесь на помощь могут прийти наноматериалы, которые зачастую либо обладают улучшенными характеристиками по сравнению с объемными монокристаллами, либо даже дополнительно приобретают новые свойства. Основная особенность всех типов наноматериалов (нанопористых, нанокристаллических, нанокомпозитных систем) заключается в преобладающей роли поверхности, а не объема. Поскольку структура поверхности как границы раздела твердое тело-окружающая среда значительно отличается от структуры объема, можно говорить о существенно дефектной (по отношению к объему) структуре поверхности и ожидать заметного изменения характеристик материала.

5.3 Некоторые аспекты поиска, создания и изучения объектов ионики твердого тела на примере работ, выполненных в Институте кристаллографии РАН

Целенаправленные исследования в этой области были начаты в 1980 г. Ионная проводимость твердых электролитов обеспечивается переносом самых различных ионов - одно-, двух-, трехзарядных катионов (Ag+, Cu+, Li+, Na+, K+, Rb+, Tl+, Cs+, Ca2+, Zn2+, Mg2+, Pb2+, Al3+, Sc3+, Ce3+, Eu3+) и анионов (F–, Cl–, Br–, O2–, S2–). Существуют материалы, где носителями заряда служат ионы двух или даже трех сортов, и вещества со смешанной ионно-электронной проводимостью. Особый интерес представляют суперионные проводники с Li+- и Na+- ионной проводимостью, поскольку именно они дают максимальный выигрыш в энергии, что гарантирует им будущее в производстве миниатюрных литиевых батареек и тяговых аккумуляторов для электромобилей. Поэтому все стремятся улучшить характеристики известных соединений или найти для этих ионов принципиально новые проводящие матрицы. Целенаправленное изменение характеристик соединений возможно только в случае, если нам удастся заглянуть в глубь кристалла, чтобы узнать, как и насколько эффективно способны перемещаться ионы в кристаллической решетке. Иначе говоря, нужно оценить потенциальные каналы проводимости и найти способы увеличения скорости движения заряженных частиц по ним. Рассмотрим в этом плане как достаточно известное соединение - ортофосфат лития Li3PO4, так и сравнительно новое - литий-замещенный титанат лантана La2/3-xLi3x}1/3–2xTiO3 ( - вакансия в позиции крупного катиона).

Страницы: 18 19 20 21 22 23 24 25 26 27 28

Информация о химии

Am – Америций

АМЕРИЦИЙ (лат. Americium), Am, химический элемент III группы периодической системы, атомный номер 95, относится к актиноидам. Свойства: серебристый металл, плотность 13,67 г/см3, tпл 1173 °C. Радиоактивен, наиболее устойчивый ...

Нанокристаллы для белизны зубов

Исследователям из Германии удалось разработать новый класс стеклокерамических материалов с нанокристаллической структурой, который, вероятно, может идеально подходить для применения в стоматологии благодаря своей высокой прочности ...

Содди (Soddy), Фредерик

Английский химик Фредерик Содди родился в Истборне. Он был седьмым сыном лондонского купца Бенджамина Содди и Ханны (Грин) Содди. Мальчику было всего два года, когда умерла его мать. Содди вырастила его сводная сестра. У Содди ран ...