Исследование фазовых эффектов в бинарных азеотропных смесях

Рефераты по химии / Исследование фазовых эффектов в бинарных азеотропных смесях
Страница 8

1.8. Цель работы

Получение и анализ новой формы уравнения Ван-дер-Ваальса на примере азеотропных смесей с использованием общих и частных фазовых эффектов.

2. Частные фазовые эффекты и вывод уравнения Ван-дер-Ваальса.

2.1. Вывод основных уравнений для частных фазовых эффектов жидкой и паровой фаз при постоянной температуре и давлении.

Проведем вывод, используя диаграммы зеотропных смесей. На рис. 2.1 представлена зависимость V – x, y из [18]

Любой материальный баланс линеен, в том смысле, что участвующие в нем два потока разных составов лежат на одной прямой с потоком, из которого они образованы.

В случае, когда температура постоянна, а давление является функцией состава, вектор направлен вдоль прямой, образующей которой служит вектор коннода (или реконнода). Таким образом, эти векторы, один из которых бесконечно мал, лежат на одной прямой. Если снести эти векторы на отрезок (концентрационный симплекс), то получим вектор ноду и вектор смещения состава , эти векторы и должны лежать на одной прямой. Смещение состава может быть вызвано или уходом из m молей жидкости dm молей пара, или приходом dm молей пара в жидкость. Договоримся, в первом случае dm имеет знак минус, а во втором знак плюс. Если рассмотреть проекции вектора ноды на ось х1, y1, то получим: для легколетучего компонента y1>x1. Таким образом, в случае ухода dm молей пара из жидкости векторы и будут направлены противоположно друг другу. Геометрически эти векторы выглядят так (рис 2.2):

Приход или уход dm молей из жидкости приводит к изменению, как её состава, так и её количества. С одной стороны бесконечно малое количество ушедшего или пришедшего в жидкость вещества (компонента i) равно d(mxi).

С другой стороны это же количество можно выразить как yi dm.

Очевидно

d(mxi)= yi dm

xi dm + m dxi= yi dm 2.1

m dxi=( yi - xi) dm

, где dt=dlnm

Очевидно, если dt>0, то dlnm>0 и вещество приходит в жидкую фазу, если dt<0, то dlnm<0 и вещество уходит из жидкой фазы. Физический смысл здесь ясен: если dt>0 количество жидкости увеличивается, а если dt<0 - уменьшается. Если индекс i равен 1, т.е. компонент легколетучий, имеем:

y1> x1 dt<0 , то dх1<0 или

y1> x1 dt>0 , то dх1>0

Таким образом, для легколетучего компонента, согласно физическому смыслу, если уходит dm молей состава пара, то уменьшается концентрация компонента 1 в жидкости, а если приходит, то увеличивается.

Если же i=2

y2< x2 dt<0 , то dх2>0

y2< x2 dt>0 , то dх2<0

Для тяжелолетучего компонента, если уходит dm молей состава пара, то концентрация компонента 2 увеличивается в жидкости, а если приходит, то уменьшается.

Вместе с тем, вектор направлен противоположно вектору ноде , если dm молей уходит из жидкости и имеет тоже направление, если dm молей приходит в жидкую фазу. Это видно из уравнения 2.2

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Информация о химии

Ac — Актиний

АКТИНИЙ (лат. Actinium), Ac, химический элемент III группы периодической системы, атомный номер 89, атомная масса 227,0278. Свойства: радиоактивен, наиболее устойчивый изотоп 227Ac (период полураспада 21,8 года). Серебристо-белый ...

Химическая термодинамика

Тем временем химики обратились к центральному вопросу физической химии – о влиянии теплоты на химические реакции. К середине 19 в. физики Уильям Томсон (лорд Кельвин), Людвиг Больцман и Джеймс Максвелл выработали новые взгля ...

Менделеев, Дмитрий Иванович

Русский химик Дмитрий Иванович Менделеев родился в Тобольске в семье директора гимназии. Во время обучения в гимназии Менделеев имел весьма посредственные оценки, особенно по латинскому языку. В 1850 г. он поступил на отделение ес ...