Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами

Рефераты по химии / Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами
Страница 25

Чашки с застывшей средой помещают на 48 часов в термостат при температуре 20-22 ºС. По истечении этого времени производят подсчет выросших колоний. Для облегчения подсчета рекомендуется применять разграфленную на квадратные сантиметры пластинку, на которую ставят чашку Петри с колониями.

Если число выросших колоний небольшое (не превышает 300), их сосчитывают полностью все. Если выросло очень много колоний, то сосчитывают их только на 20-30 отдельных квадратах, расположенных равномерно по всей площади чашки Петри. Полученные цифры колоний складывают вместе, делят на число подсчитанных квадратиков и таким образом определяют среднее число их на 1 см3 . Подсчет колоний производят с лупой (увеличение 6-8 раз).

Затем вычисляют площадь чашки Петри в квадратных сантиметрах и, умножив полученную величину на среднее число колоний на 1 см2 , находят их общее число в том количестве воды, которое было взято для посева в данной чашке.

Підпис: 
Рис. 6. Метод диффузии в чашке

Методика 2. Для количественной оценки биоцидного действия гуанидинсодержащих полимеров пользовались методом диффузии в агар. Для проведения теста с диффузией чашки заполняли до определенной высоты агаризированной средой, содержащей суспензию тест-организма (E.coli). Затем в чашки вносили минимальные количества исследуемого полимера (1 мг для гуанидинсодержащих полимеров). Это количество вносили в лунки питательной среды. При положительной реакции во всех случаях после инкубации становится заметной зона подавления роста тест-организма (рис. 6). Диаметр этой зоны при соблюдении постоянных условий опыта (состав питательной среды, толщина слоя агара, плотность посева, время инкубации, температура и т. д.) пропорционален логарифму концентрации биоцидного полимера.

Глава

III

. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1 Радикальная сополимеризация акрилат и метакрилатгуанидинов акриламидом в водных средах

Несмотря на важные мирные «профессии» полимеров АА, их использование в оборонной промышленности значительно ограничило доступность научной информации, поэтому до начала 70-х годов в литературе отсутствовали сведения о технологии производства указанных полимеров. В последние годы наряду с улучшением сырьевой базы создана научная основа для направленной разработки полимеров с заданными свойствами, разработаны перспективные методы синтеза полимеров – полимеризация и сополимеризация АА в концентрированных водных растворах и дисперсиях, получили развитие методы химической модификации полимеров. Сополимеры АА традиционно и широко используется во многих отраслях промышленности, в том числе, в качестве флоккулянтов [146-151], в нитроцеллюлозном, керамическом и силикатном производстве [153], при очистке сточных вод [146-155], для осаждения полимерных латексов [154-155], стабилизации взвесей и пищевых жидкостей [153].

В сельском хозяйстве они, а также полимерные комплексы на их основе, служат для улучшения структуры почв, для предотвращения ветровой эрозии [154], и данный перечень применений далеко не полный и составляет лишь небольшую часть хорошо известных и широко используемых полимерных материалов на основе сополимеров АА.

В настоящее время полимеры АА производят крупные фирмы США, Японии и развитых стран Европы. Они являются основными поставщиками полимеров на мировой рынок, а в России, Китае и ЮАР полимеры производят для внутреннего потребления. Производство полимеров АА продолжает неуклонно возрастать и к концу века достигнет 400 тыс. т. в год. Однако темпы роста производства не удовлетворяют потребностей, которые ежегодно возрастают на 8-10%. Поэтому актуальны разработка новых и совершенствование существующих перспективных методов синтеза ПАА, его производных и сополимеров АА.

Страницы: 20 21 22 23 24 25 26 27 28 29 30

Информация о химии

Беккерель (Becquerel), Антуан Анри

Французский физик Антуан Анри Беккерель родился в Париже. Его отец, Александр Эдмон, и его дед, Антуан Сезар, были известными учеными, профессорами физики в Музее естественной истории в Париже и членами Французской академии наук. ...

Бургаве (Boerhaave), Герман

Голландский врач, ботаник и химик Герман Бургаве родился в г. Ворхаут, близ Лейдена. Учился в Лейденском университете, где защитил диссертацию на степень доктора философии (1690). В 1693 г. получил степень доктора медицины; в 1693 ...

Pd — Палладий

ПАЛЛАДИЙ (лат. Palladium), Pd, химический элемент VIII группы периодической системы, атомный номер 46, атомная масса 106,42, относится к платиновым металлам. Свойства: плотность 12,02 г/см3, tпл 1554 °С. Название: назван по ...