Теория активированного комплекса (ТАК)

Рефераты по химии / Теория активированного комплекса (ТАК)
Страница 2

Внимание! Отсюда следует выражение для константы скорости бимолекулярной реакции в ТАК, не вызывающее сомнений в размерности констант скоростей бимолекулярных реакций:

(6.2)

В учебниках чаще всего приводится не столь прозрачное выражение, построенное на иной стандартизации состояний - стандартизуют концентрацию, и в итоге возникает размерность константы скорости, внешне соответствующая моно-, а не би молекулярной реакции. Размерности концентраций оказываются как бы скрыты. У Эйринга, Глесстона и Лейдлера - самих творцов ТАК в книге «Теория абсолютных скоростей реакций» есть анализ, где учтена стандартизация состояний по давлениям. Если стандартным считать состояние с единичными концентрациями реагентов и продуктов, то формулы слегка упростятся, а именно:

Отсюда следует обычно представленное в учебниках выражение для константы скорости согласно ТАК: (6.3)

Если не выделить роль стандартного состояния, то теоретическая константа скорости бимолекулярного превращения может обрести чужую размерность, обратную времени, которая будет отвечать мономолекулярной стадии распада активированного комплекса. Активационные величиныS#0 и H#0 нельзя считать обычными термодинамическими функциями состояния. Они не сопоставимы с обычными характеристиками пробега реакции уже потому, что методов их прямого термохимического измерения просто не существует . По этой причине их можно назвать квазитермодинамическими характеристиками процесса активации.

При образовании частицы активированного комплекса из двух исходных частиц имеет место , и в результате получается

(6.4)

Размерность константы скорости обычная для реакции второго порядка:

Эмпирическая энергия активации по Аррениусу и её сравнение с близкими

аналогичными активационными параметрами (энергиями) ТАС и ТАК:

Основа - уравнение Аррениуса в дифференциальной форме:

1) в ТАС получаем:

2.1) ТАК. Случай 1. (Общий подход при условии стандартизации концентраций)

подстановка в уравнение Аррениуса даёт

2.2) ТАК. Случай 2. (Частный случай бимолекулярной стадии активации ).

Энергия активации по Аррениусу для бимолекулярной реакции:

Внимание!!! Полагаем чаще всего

2.2) Исходя из стандартизации давления, получаем энергию активации:

(6.7)

2.3) Это же получается для бимолекулярной реакции и при стандартизации концентрации:

(6.8)

в бимолекулярном акте активации n#= -1, и (6.10)

Результат: Формула, связывающая энергию активации Аррениуса с квазитермодинамическими функциями активации теории переходного состояния, не зависит от выбора стандартного состояния.

3. Адиабатические потенциалы и потенциальные поверхности.

Страницы: 1 2 3 4

Информация о химии

Pa — Протактиний

ПРОТАКТИНИЙ (лат. Protactinium), Pa, химический элемент III группы Периодической системы элементов Менделеева, атомный номер 91, атомная масса 231,0359, относится к актиноидам. Свойства: радиоактивен; наиболее устойчивый изотоп 2 ...

Дюма (Dumas), Жан Батист Андрэ

Французский химик и государственный деятель Жан Батист Андре Дюма родился 14 июля 1800 г. в Алесе. Закончив Женевский университет, в 1823-1840 гг. Дюма работал в Политехнической школе в Париже; в 1835 г. стал профессором Политехни ...

Механистическая философия

С уменьшением влияния ятрохимии натурфилософы вновь обратились к учениям древних о природе. На первый план в 17 в. вышли атомистические (корпускулярные) воззрения. Одним из виднейших ученых – авторов корпускулярной теории &n ...