Исследование структуры тонких полисилоксановых пленок, полученных в плазме разряда, при низких температурах

Рефераты по химии / Исследование структуры тонких полисилоксановых пленок, полученных в плазме разряда, при низких температурах
Страница 1

В связи с перспективностью применения тонких (0,2—1 мкм) полимерных пленок в различных областях техники изучение структуры полимерных пленок представляет не только теоретический, но и практический интерес. Известно, что структура полимера, образованного из газовой фазы под действием плазмы разряда, зависит как от условий проведения полимеризации [1, 2], так и от структуры исходного соединения.

Ранее [3] методом ИК-спектроскопии исследована термическая деструкция тонких полисилоксановых пленок и показано, что в области температур 150—300° происходит структурирование полимера, приводящее к дополнительному сшиванию молекул вследствие отрыва органических групп. При этом полисилоксановые пленки толщиной 0,5—1 мкм оказались термически устойчивы вплоть до 500°.

Цель настоящей работы — исследование структуры тонких полисилоксановых пленок, полученных на поверхности металла полимеризацией из газовой фазы под действием плазмы разряда при 20-196°.

Образцы полисилоксановых пленок (0,2—1 мкм) получали по методике, описанной ранее [4], полимеризацией гексаметилдисилоксана (ГМДС) в тлеющем разряде переменного тока при следующих условиях: давление паров ГМДС в реакционной камере =И0 Па, плотность тока разряда 0,2—1,0 мА/см2, частота разряда 100 Гц. В качестве подложек использовали полированные пластины ситалла (48X60 мм), на которые предварительно методом термического напыления в вакууме осаждали пленки алюминия. Осаждение тонких полимерных пленок осуществляли как на электродах, так и на подложке, помещенной в плазму тлеющего разряда.

ИК-спектры полисилоксановых пленок снимали методом отражения от подложки [5] на автоматическом регистрирующем спектрофотометре ИКС-22 в отраженном свете при почти нормальном падении пучка, что удваивало поглощение. Такой же была схема и при низкотемпературных измерениях в вакуумном криостате с окнами из КРС-5, позволяющем плавно изменять температуру образца от —196 до 300° без нарушения вакуума в рабочей камере. Во всех измерениях использовали разработанные нами приставки, фокусирующие на образце уменьшенное в 1,6 раза изображение источника света (глобара) и передающие это изображение на щель спектрального прибора без изменения его размеров.

Для низкотемпературных исследований разработан специальный оптический криостат (рис. 1), в котором в качестве хладогента для создания низких температур использовали жидкий азот. Принцип работы криостата состоит в следующем. Жидкий азот из резервуара 4 по хладопроводу 5 поступал к держателю образца 8. После достижения образцом температуры кипения жидкого азота (-196°) перекрывали крышку 1 и пробку 11; при этом пары жидкого азота поступали к держателю образца через отверстие 13 и хладопровод 5. Вывод паров жидкого азота осуществляли через патрубок 14. Температуру образца во время записи спектров поддерживали постоянной (с точностью ±0,5°) при помощи системы терморегулирования на базе электронного стабилизатора низких температур типа ЭСНТ-1. Наличие в криостате окон на КРС-5 обеспечивало возможность записи ИК-спектров полисилоксановых пленок в требуемом спектральном диапазоне 2—15 мкм. Криостат крепили на зеркальной приставке и помещали в кюветное отделение спектрофотометра ИКС-22.

Рис. 1. Схема криостата: 1 — крышка, 2 — вакуумный вентиль, 3 — корпус, 4 - резервуар для хладоагента, 5 - хладопровод, 6 - вакуумная полость, 7 — электронагреватель, 8 — держатель образца, 9 — окно, 10 - датчик температуры, 11 — пробка, 12 — патрубок, 13 — отверстие для прохождения паров азота, 14 — патрубок

Страницы: 1 2 3 4 5 6

Информация о химии

Декарт (Descartes), Рене (Картезий)

Французский философ, физик, математик и физиолог Рене Декарт (латинизированное имя – Картезий; Cartesius) родился в Лаэ близ Тура в знатной, но небогатой семье. Образование получил в иезуитской школе Ла Флеш в Анжу (окончил ...

Электрохимическое растворение платины в ионной жидкости

Драгоценные металлы, в особенности платина, являются катализаторами многих промышленно значимых реакций. Одной из наиболее динамично развивающихся областей практического применения платины являются некоторые типы топливных ячеек. ...

Ибн Сина, Абу Али аль Хусейн ибн Абдаллах (Авиценна)

Персидский врач, учёный, философ и поэт Абу Али аль Хусейн ибн Абдаллах Ибн Сина (латинизированное имя – Авиценна) родился в с. Афшана, близ Бухары. Жил в Средней Азии и Иране, изучал в Бухаре математику, астрономию, философ ...