Исследования химии в 20-21 веках
Рефераты по химии / Исследования химии в 20-21 векахСтраница 6
Таким образом, если в начале XX в. люди упорно не хотели видеть вреда от облучения, то в конце его - стали бояться радиации даже тогда, когда она не представляет реальной опасности. Причина обоих явлений одна - человеческое невежество. Можно только надеяться, что в будущем человек научится придерживаться золотой середины и обращать знания о природных явлениях себе во благо.
4. ПЕРСПЕКТИВНЫЕ ХИМИЧЕСКИЕ ПРОЦЕССЫ
4.1 Плазмохимические процессы
Плазмохимические процессы протекают в слабоионизированной, или низкотемпературной, плазме при температуре от 1000 до 10000°С. Ионизированные и неионизированные частицы плазмы, находящиеся в возбужденном состоянии, в результате столкновений легко вступают в химическую реакцию. Производительность метанового плазмохимического реактора - плазмотрона сравнительно небольших размеров (длиной 65 см и диаметром 15 см) - составляет 75 т ацетилена в сутки. По производительности он не уступает огромному заводу. В нем при температуре 3000-3500 °С за 0,0001с около 80% метана превращается в ацетилен. Коэффициент полезного потребления энергии - 90-95 %, а энергозатраты - менее 3 кВт/ч на 1 кг ацетилена. В то же время в традиционном паровом реакторе пиролиза метана энергозатраты вдвое больше.
В последнее время разработан эффективный способ связывания атмосферного азота посредством плазмохимического синтеза оксида азота, который гораздо экономичнее традиционного аммиачного способа. Создана плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии. Разработаны плазмохимические методы синтеза карбидов, нитридов, карбонитридов таких металлов, как титан, цирконий, ванадий, ниобий и молибден, при сравнительно небольших энергозатратах - 1-2 кВт/ч на 1 кг готовой продукции.
В 70-х годах XX в. созданы плазмохимические сталеплавильные печи, производящие высококачественный металл. Ионно-плазменная обработка рабочей поверхности инструментов позволяет повысить их износостойкость в несколько раз. В результате подобной обработки можно сформировать, например, пористый рельеф на ровной поверхности.
Ионно-плазменное напыление в вакууме широко применяется для формирования элементов современных интегральных схем.
Методом плазменного напыления можно нанести пористое покрытие со сложной микроструктурой, способствующее срастанию эндо - протеза с костной тканью. С помощью пористых покрытий можно увеличить эффективность катализатора, повысить коэффициент теплоотдачи и т.д.
Плазмохимия позволяет синтезировать металлобетон, в котором в качестве связующих материалов используют сталь, чугун и алюминий. Металлобетон образуется при сплавлении частиц горной породы с металлом и по прочности превосходит обычный бетон: на сжатие - в 10 раз и на растяжение - в 100 раз. В нашей стране разработан плазмохимический способ превращения угля в жидкое топливо без применения высоких давлений и выброса золы и серы. Кроме основного химического продукта - синтез газа, извлекаемого из органических соединений каменного или бурого угля, этот способ позволяет получить из неорганических включений угля ценные соединения: технический кремний, карбосилиций, ферросилиций, адсорбенты для очистки воды и т.п., - которые при других способах переработки угля выбрасываются в виде зольных отходов.
4.2 Самораспространяющийся высокотемпературный синтез
Для производства многих тугоплавких и керамических материалов применяется технология порошковой металлургии, включающая операции прессования при высоком давлении и спекания полученной заготовки при относительно высокой температуре 1200-2000 °С. Однако эта технология довольно энергоемкая: создание высоких температур и давления требует больших энергозатрат. Гораздо проще и экономичнее предложенная сравнительно недавно технология самораспространяющегося высокотемпературного синтеза, основанная на реакции горения одного металла в другом или металла в азоте, углероде, кремнии и т.п., т.е. теплового процесса горения в твердых телах.
Информация о химии
P — Фосфор
ФОСФОР (лат. Phosphorus), Р, химический элемент V группы периодической системы Менделеева, атомный номер 15, атомная масса 30,97376. Свойства: образует несколько модификаций: белый фосфор (плотность 1,828 г/см3, tпл 44,14 °С) ...
Au — Золото
ЗОЛОТО (лат. Aurum), Аu, химический элемент I группы периодической системы, атомный номер 79, атомная масса 196,9665. Свойства: благородный металл желтого цвета, ковкий. Плотность 19,32 г/см3, tпл = 1064,4° C. Химически весьм ...
Аминокислотные остатки расскажут о возрасте пятен крови
Химики их США разработали простой и быстрый метод определения возраста пятен крови. Новый метод основан на измерении значения естественной флуоресценции. Информация о том, когда появилось то или иное пятно крови, позволяет экспер ...