Микрогетерогенные системы
Рефераты по химии / Микрогетерогенные системыСтраница 2
При этом должны соблюдаться условия, ограничивающие возможности значительного разрастания и сцепления частиц дисперсной фазы. Дисперсность образующихся суспензий можно регулировать также введением ПАВ.
Суспензии очищают от примесей растворенных веществ диализом, электродиализом, фильтрованием, центрифугированием.
Суспензии образуются также в результате коагуляции лиозолей. Следовательно, способы осуществления коагуляции — это одновременно и методы получения суспензий.
Все вышесказанное касалось промышленных и бытовых суспензий. Природные суспензии (а ими являются практически все водоемы Земли) образуются вследствие попадания в воду твердых частиц в результате разрушения аэрозолей, а также при диспергировании почв, грунтов и скальных пород под воздействием сил прибоя, приливно-отливных явлений, при движении ледников.
СЕДИМЕНТАЦИОННАЯ УСТОЙЧИВОСТЬ РАЗБАВЛЕННЫХ СУСПЕНЗИЙ
Седиментационная устойчивость суспензии — это способность ее сохранять неизменным во времени распределение частиц по объему системы, т. е. способность системы противостоять действию силы тяжести.
Так как большинство суспензий оказываются полидисперсными системами, содержащими и относительно крупные частицы, которые не могут участвовать в броуновском движении, суспензии являются седиментационно (кинетически) неустойчивыми системами. Если плотность частиц меньше плотности дисперсионной среды, то они всплывают, а если больше — оседают.
Изучение седиментации суспензий связано, в первую очередь, с получением кривых накопления осадка (кривых седиментации) m = f(t). Кривые накопления могут быть двух видов: с перегибом или без перегиба. Установлено, что вид кривых седиментации зависит от того, является ли седиментирующая суспензия агрегативно устойчивой или нет:
1) Если седиментация сопровождается укрупнением частиц, а следовательно, увеличением скорости их оседания, то на кривых седиментации появляется точка перегиба.
2) Если же суспензия агрегативно устойчива (нет коагуляции), то на кривой седиментации перегиб отсутствует. Характер осадков, полученных в том и другом случаях, также различен.
В агрегативно устойчивых суспензиях оседание частиц происходит медленно и формируется очень плотный осадок. Объясняется это тем, что поверхностные слои препятствуют агрегированию частиц; скользя друг по другу, частицы могут перейти в положение с минимальной потенциальной энергией, т. е. с образованием упаковки, близкой к плотнейшей. В этом случае расстояние между частицами и координационное число (число соседних частиц) в осадке такой седиментирующей, но предельно стабилизированной суспензии, определяется соотношением между:
• силой тяжести;
• межмолекулярным притяжением частиц;
• силами отталкивания между частицами, обеспечивающими агрегативную устойчивость суспензии.
В агрегативно неустойчивых суспензиях оседание частиц происходит значительно быстрее вследствие образования агрегатов. Однако выделяющийся осадок занимает гораздо больший объем, так как частицы сохраняют то случайное взаимное расположение, в котором они оказались при первом же контакте, силы сцепления между ними соизмеримы с их силой тяжести или больше ее. Наблюдается анизометрия (т. е. преобладание одного из размеров частицы над двумя другими) образующихся агрегатов или флокул. Исследования показывают, что наиболее вероятны цепочечные и спиральные первоначальные агрегаты, из которых затем получаются осадки большого седиментационного объема.
Различие седиментационных объемов агрегативно устойчивых и неустойчивых систем наиболее четко проявляется, если частицы имеют средние размеры. Если частицы крупные, то, несмотря на то, что суспензия агрегативно неустойчивая, осадок получается более плотным из-за значительной силы тяжести, зачастую преобладающей над силами сцепления между частицами. Если же частицы очень мелкие, то и в агрегативно устойчивой системе из-за малой силы тяжести образуется чрезвычайно подвижный осадок.
Информация о химии
Электрохимическое растворение платины в ионной жидкости
Драгоценные металлы, в особенности платина, являются катализаторами многих промышленно значимых реакций. Одной из наиболее динамично развивающихся областей практического применения платины являются некоторые типы топливных ячеек. ...
Липском (Lipscomb), Уильям Нанн
Американский физикохимик Уильям Нанн Липскомб родился в Кливленде (штат Огайо), в семье Эдны (Портер) Липскомб и Уильяма Н. Липскомба. Через год после его рождения семья переехала в Лексингтон (штат Кентукки). По окончании средней ...
Hf — Гафний
ГАФНИЙ (лат. Hafnium), Hf, химический элемент IV группы периодической системы, атомный номер 72, атомная масса 178,49. Свойства: серебристо-белый тугоплавкий металл; плотность 13,35 г/см3, tпл 2230 °С. Название: назван от по ...
