Индикаторы требования к ним и классификация
Рефераты по химии / Индикаторы требования к ним и классификацияСтраница 3
титрования: 1) до начала титрования; 2) при титровании до ТЭ; 3) в ТЭ; 4) при титровании после достижения ТЭ.
Если специально не оговорено иное, то характерные участки ТКТ рассчитывают в гипотетических стандартных условиях. При этом принимают, что на титрование взято 100 см3 анализируемого раствора, его концентрацию, как и титранта, выражают в виде молярной концентрации эквивалента вещества (т.е. соотносят с концентрацией нормального раствора) и считают обычно равной 0.1моль/дм3 (0.1н.).
Точки ТКТ рассчитывают, как правило, для 0; 10; 50; 90; 99; 99,9; 100 (ТЭ); 100,1; 101; 110; 150; 200 процентов добавленного вещества титранта от его количества, необходимого для химической эквивалентности определяемому веществу. ТКТ с двумя и большим числом ТЭ рассчитывают при процентах титранта, аналогичных приведенным выше, только увеличиваемых на сто после каждой ТЭ. При равных концентрациях титранта и титруемого раствора проценты добавленного титранта могут быть заменены численно равными значениями объемов. Поэтому точки ТКТ рассчитывают в зависимости от объема добавленного титранта, от степени () или процента (100,%) оттитрования:
где А и В - определяемое вещество и вещество титранта, соответственно.
Степень оттитрования - удобный критерий для отслеживания момента смены расчетной формулы, особенно при машинном счете, поскольку до начала титрования =0, до 1-й ТЭ - 0 1; в 1-й ТЭ - =1 и т.д.
Практическое значение имеет область ТКТ, называемая скачком титрования
, в которой происходит резкое (скачкообразное) изменение свойства (рН, Е, рМ, рХ) титруемого раствора. Скачком титрования считают начало участка ТКТ, отвечающего моменту добавления 99 (более точно 99,9)% титранта (т.е. недотитрование на 1(0,1)%), а концом - моменту добавления 101 (100.1)% титранта (перетитрование на 1(0,1)%).
Наличие четкого скачка титрования на ТКТ позволяет сделать заключение о возможности регистрации ТЭ в реальном титровании при аналогичных расчетным концентрациях, а также выбрать индикатор и оценить погрешность титрования с ним.
У правильно выбранного индикатора переход окраски должен происходить в интервале изменения свойств титруемого раствора, отвечающего скачку титрования. Индикаторная погрешность титрования может быть приблизительно оценена следующим образом: если переход окраски индикатора происходит в области скачка титрования при 99…101% добавленного титранта, погрешность не превышает 1%, а если при 99,9…100,1%, то меньше 0,1%. Формулы для точной количественной оценки индикаторной погрешности в случае протолиметрического, редоксиметрического и комплексонометрического титрований приведены в соответствующих разделах данного пособия.
Протолитометрия
- это раздел титриметрии с использованием кислотно-основной реакции (реакции нейтрализации). Название этот раздел получил от протолитической теории кислот и оснований.
Протолиметрию подразделяют на ацидиметрию
(от лат. аcidum - кислота) и алкалиметрию
(от лат. alcalum - щелочь). В ацидиметрии в качестве рабочего раствора используют титрованные растворы сильных кислот, а в алкалиметрии - щелочей.
Прямым титрованием в протолиметрии определяют концентрацию кислоты или основания, или содержание элементов, образующих растворимые кислоты и основания (например фосфора в виде фосфорной кислоты и т.п.). Обратным или косвенным титрованием находят содержание некоторых солей. Например, для определения содержания NH4+ в NH4Cl обратным титрованием можно добавить к анализируемому раствору точно отмеренный избыток стандартного раствора NaOH, нагреть смесь до полного удаления NH3, а затем остаток раствора NaOH оттитровать кислотой в присутствии метилового оранжевого. Косвенный вариант титрования NH4+ можно осуществить формальдегидным методом, заместив ионы NH4+ эквивалентным количеством Н+- ионов реакцией раствора NH4Cl с избытком формальдегида по реакции
NH4Cl + 6CH2O (CH2)6N4 + HCl + 6H2O
Содержание NH4+ находят по результатам алкалиметрического титрования заместителя, т.е. HCl.
Протолиметрическое титрование в основном проводят в водной среде, но существует и неводный вариант. В последнем случае, подобрав соответствующий растворитель, можно направленно изменять силу растворенных в нем кислот и оснований, превращать соли в кислоты и основания и т.д. Например, HCN в водном растворе - слабая кислота, а в среде сжиженного аммиака - сильная, мочевина в растворе безводной СН3СООН - сильное основание, а в сжиженном аммиаке - кислота и т.п. Поэтому применение неводного титрования делает возможным титрование очень слабых кислот и оснований, различных смесей солей с близкими свойствами, смесей солей с кислотами и основаниями, определение нерастворимых в воде и разлагаемых ею соединений.
Информация о химии
Просто добавь воды, и произойдет конверсия углекислого газа
Исследователи из Японии продемонстрировали, что возможно осуществить фотокаталитическое восстановление CO2, используя в качестве восстановителя обычную воду. Результаты работы приближают возможность экологически безопасного примен ...
Фарадей (Faraday), Майкл
Английский физик Майкл Фарадей родился в предместье Лондона в семье кузнеца. Окончив начальную школу, с двенадцати лет он работал разносчиком газет, а в 1804 г. поступил в ученики к переплетчику Рибо, французскому эмигранту, всяче ...
Дюма (Dumas), Жан Батист Андрэ
Французский химик и государственный деятель Жан Батист Андре Дюма родился 14 июля 1800 г. в Алесе. Закончив Женевский университет, в 1823-1840 гг. Дюма работал в Политехнической школе в Париже; в 1835 г. стал профессором Политехни ...