Иммобилизованные соединения

Рефераты по химии / Иммобилизованные соединения
Страница 6

Совокупность данных о желатине как полимерном массиве позволяет выделить следующие специфические особенности комплексообразования в системе желатин—металлгексацианоферрат(II):

- затрудненный, по сравнению с раствором, контакт между реагентами;

- наличие заряда у молекул полимерного массива (поскольку желатин — амфолит);

- крайне малый объем, где образуется комплекс;

- ограниченная подвижность комплексообразователя (в данном случае — иммобилизованного МГФ) при достаточно высокой подвижности молекул взаимодействующего с ним лиганда;

- малая скорость “доставки” лиганда в реакционный объем.

В этой связи желатиновую матрицу с МГФ, с одной стороны, можно рассматривать как твердофазный реакционный микрообъем, с другой — как некое промежуточное состояние между раствором и твердой фазой. “Лобовая атака” МГФ лигандом, пока последний не находится в водно-щелочном растворе, не приводит к успеху — гексацианоферрат(II) металла надежно защищен от него желатиновой “броней”. Другое дело при контакте того же металлокомплекса со щелочными растворами хелатирующих лигандов. Их депротонированные формы образуют более устойчивые по сравнению с МГФ координационные соединения, и лиганды, диффундируя в желатиновый слой, “атакуют” находящийся в нем МГФ изнутри. А уж далее лиганд, добравшись до металла М, связывает его в соответствующее хелатное соединение. Входящее же в состав МГФ двухвалентное железо трансформируется в кинетически инертный анион [Fe(CN)6]4–, который потом удаляется из полимерной фазы в раствор. Возможен, впрочем, и другой вариант. Вначале МГФ разрушается под действием ионов ОН–, которые содержатся в контактирующем с матрицей растворе, а уж потом возникший на его “развалинах” другой координационный полимер — оксогидроксид соответствующего металла — вступает в комплексообразование с наличным лигандом.

“Классическое” комплексообразование в МГФ-матрице

Самое резкое отличие этого процесса от образования координационных соединений в растворе (или твердой фазе) наблюдается в системе ион металла—лиганд, где металл — это, скажем, двухвалентный никель, а лиганд L — дитиооксамид H2N-C(=S)-C(=S)-NH2. Результаты анализа кинетических кривых комплексообразования, химического анализа и традиционных физических методов исследования свидетельствуют, что если этот процесс протекает в желатиновой матрице с иммобилизованным МГФ, то синтезируются минимум пять (!) координационных соединений, причем разного цвета. В стилизованной форме их можно записать как (Ni2L)2[Fe(CN)6] (зеленовато-серый), NiL(OH2)2 (розово-фиолетовый), [NiL(OH2)2]n (фиолетовый), [Ni(HL)2]n (темно-синий) и [NiLHL]– (бесцветный), где HL– и L2– — одно- и двукратно депротонированная форма лиганда дитиооксамида. Примечательно, что NiL((OH2)2 при pH<5 быстро и необратимо переходит в [Ni(HL)2]n. Если эту же реакцию комплексообразования проводить в растворе или твердой фазе, образуется лишь одно координационное соединение — [Ni(HL)2]n.

Откуда это резкое различие? А дело в том, что теоретически возможны два варианта атаки дитиооксамидом имеющихся у иммобилизованного в желатине Ni2[Fe(CN)6] вакантных координационных мест — либо сразу двух, принадлежащих разным атомам никеля, либо только одного. Первый из них, который как раз и должен привести к образованию комплекса с дефицитом лиганда, может воплотиться только в жестко ограниченном реакционном объеме и недостатке лиганда в нем. В принципе для комплексообразования в растворе и твердой фазе можно создать или то, или другое условие, а вот одновременно оба — лишь в желатиновой системе. Если же в этой системе реализуется второй вариант, из-за ее крайне малого реакционного объема создаются очень высокие концентрации ионов OH–. Это способствует “атаке” ими вакантных “аксиальных” координационных мест образующегося в первый момент интермедиата Ni(HL)2 с последующим присоединением одной молекулы лиганда и формированием протонодефицитного хелата NiL(OH2)2. При достаточно большой концентрации последнего в желатиновой системе он агрегирует и образуется полимер [NiL(OH2)2]n — опять-таки благодаря крайне малому реакционному объему.

Страницы: 1 2 3 4 5 6 7 8

Информация о химии

Просто добавь воды, и произойдет конверсия углекислого газа

Исследователи из Японии продемонстрировали, что возможно осуществить фотокаталитическое восстановление CO2, используя в качестве восстановителя обычную воду. Результаты работы приближают возможность экологически безопасного примен ...

Бутадион

Синонимы: 1,2-дифенил-4-н-бутил-3,5-пиразолидиндион Внешний вид: бел. кристаллы Брутто-формула (система Хилла): C19H20N2O2 Молекулярная масса (в а.е.м.): 308,37 Температура плавления (в °C): 105 Растворимость (в г/100 г ...

Виттиг (Wittig), Георг Фридрих Карл

Немецкий химик Георг Фридрих Карл Виттиг родился в Берлине, в семье профессора изящных искусств Берлинского университета Густава Виттига и Марты (Домбровски) Виттиг. Окончив гимназию Вильгельма в Касселе, он в 1916 г. поступил в Т ...