Электроаналитические методы в биомедицинских исследованиях

Рефераты по химии / Анализ биологических тканей и жидкостей / Электроаналитические методы в биомедицинских исследованиях
Страница 1

Еще на заре развития электрохимических методов анализа (ЭМА) объекты биологии, медицины и фармации привлекали внимание исследователей. Это прежде всего относится к классической полярографии, в меньшей мере к потенциометрии и вольтамперометрии. В 30-х годах XX века чешский исследователь Брдичка обнаружил каталитические волны белков в аммонийно-аммиачных буферных растворах в присутствии солей кобальта. Впоследствии этот метод был применен в медицине для диагностики рака, а затем и для других заболеваний. Он известен как серологическая реакция Брдички. Достижения классичекой полярографии в биологии, медицине и фармации обобщены в монографии М. Бржезины и П. Зумана, которая оказала самое плодотворное влияние на развитие этой области ЭМА. Большая часть пионерских работ в этой области анализа были выполнены исследователями, которые имели базовое образование фармацевта, что не могло не сказаться на применении этого метода в биомедицинских исследованиях С помощью методов ВА определяли различные метаболиты, белки, идентефицировали ферменты, оцнивали их активность по продуктам ферментативных реакций, исследовали процессы в микроорганизмах, суюклеточных культурах, в тканях по продуктам их жизнедеятельности. Кроме того, эти методы применяли для получения электрохимических характеристик веществ, участвующих в переносе электронов в процессе дыхания и фотосинтеза, при моделировании окислительно восстановительных процессов в живой клетке, а также для исследования структурных особенностей биологических макромолекул и биомембран и т.д. В 60-х годах с появлением ионоселективных электродов (ИСЭ) стало возможным потенциометрическое определение катионов и анионов как in vitro, так и in vivoв растворах, включая цельную кровь.

Прогресс в области ионометрии и разработки новых ИСЭ с улучшенными характеристиками, в частности, на основе полевых транзисторов привел к появлению разнообразных потенциометрических сенсоров, устройств и приборов для определения органических и неорганических, в том числе и лекарственных, соединений в различных условиях (в потоке жидкости, в очень малых объемах растворов и т.д.). Современная биохимическая лаборатория имеет возможность использовать ионометрические установки как для прямого определения, так и для потенциометрического титрования в водных и неводных средах.

Достигнутые успехи не означали отсутствие проблем, обусловленных перманентными требованиями к необходимой воспроизводимости, надежности, чувствительности, а также селективности определений, особенно для электродов-сенсоров с амперометрическим откликом, которые порой трудно достигались, поскольку компоненты, определялись в сложных по составу матрицах. Потенциометрические сенсоры на основе мембран с включенными в них электроактивными органическими соединениями показали достаточно высокую селективность при определении этих же соединений в испытуемом растворе. Их используют при анализе порошков, суппозитарий, таблеток и других лекарственных форм; при этом не требуется сложная пробоподготовка.

Новый этап развития ЭМА применительно к обсуждаемым объектам связан с применением имообилизированных биоматериалов как реагентов нового поколения для модифицирования электродов и создания на их основе биосенсоров.

Функциональо биосенсоры сопоставимы с датчиками живого организма – биорецепторами, способными преобразовывать все типы сигналов, поступающие из окружающей среды, в электрические, которые легко измерить.

Биосенсоры, с одной стороны, можно рассматривать как устройства, работающие на принципах биологического распознавания определяемых молекул или других частиц. Поэтому их можно отнести к категориям биологических и биохимических методов анализа.

С другой стороны, биосенсоры – это биоэлектронное устройство, включающее чувствительный элемент, тесно связанный с физическим преобразователем либо интегрированный с ним, чаще всего с электродом. Интерес к биосенсорам обусловлен их широким потенциальным применением в контроле состояния окружающей среды и охране здоровья человека.

Многообразие биосенсоров объясняется различной природой биоматериала, типом физического преобразователя, способами регистрации электрического сигнала. Сама их конструкция может быть тесно связана с применением.

Что касается метода регистрации, то при интегральной оценке развития ЭМА периода последних 5-15 лет в аспектах биологии и медицины, можно увидеть возрастание удельного веса ВА и родственных методов среди других.

Страницы: 1 2 3

Информация о химии

P — Фосфор

ФОСФОР (лат. Phosphorus), Р, химический элемент V группы периодической системы Менделеева, атомный номер 15, атомная масса 30,97376. Свойства: образует несколько модификаций: белый фосфор (плотность 1,828 г/см3, tпл 44,14 °С) ...

Mn — Марганец

МАРГАНЕЦ (лат. Manganum), Mn, химический элемент с атомным номером 25, атомная масса 54,9380. Химический символ элемента Mn произносится так же, как и название самого элемента. Природный марганец состоит только из нуклида 55Mn. Ко ...

Es — Эйнштейний

ЭЙНШТЕЙНИЙ (лат. Einsteinium), Es, химический элемент III группы Периодической системы, атомный номер 99, относится к актиноидам. Свойства: радиоактивен. Наиболее устойчивый изотоп 252Es (период полураспада 472 дня). Получен иску ...