Рабочий пример. Микросостояния атома углерода.

Рефераты по химии / Состояния и уровни многоэлектронных атомов. Орбитали и термы. Векторная модель / Рабочий пример. Микросостояния атома углерода.
Страница 2

30. С помощью двойки чисел (ML, MS) можно частично охарактеризовать микросостояние оболочки, но это не исчерпывающая характеристика атомной оболочки в целом.

31. Почему энергетические уровни, возникающие благодаря электростатиче­ским кулоновским взаимодействиям, классифицируют с помощью свойств моментов им­пульса? Что это? Простое случайное удобство или имеется глубинная фундаментальная причина такого положения дел?

32. Ответ: Согласно законам сохранения в стационарных циклических движениях системы следует, что в отсутствие внешних воздействий её сохраняющи­мися динамическими величинами являются энергия (скалярная величина) и момент импульса (векторная величина). Эти законы сохранения справед­ливы и в классической, и в квантовой механике, в том числе в коллективных многоэлектронных состояниях атомной оболочки. Состояния обозначают символами их волновых функций . Итак, каждое состояние характеризуется постояными энергией (уровнем) и моментом.

33. Закон сохранения в квантовой механике выражается в виде правила коммутативности. Если операторы двух динамических переменных коммутируют, то наборы их собственных волновых функций одинаковы.

34. Гамильтониан и момент импульса многоэлектронного коллектива атома коммутируют, и поэтому для детальной классификации коллективных уровней энергии

можно использовать свойства момента импульса

.

35. Резюме

: Из-за сложности задачи невозможно получить точно весь спектр состояний - уровней многоэлектронного атома дедуктивным способом, как это делается для одноэлектронного водородоподоб­ного атома (иона). Количественный расчёт даже отдельного электронного уровня сложного атома – всё же сложная задача, но, тем не менее, классификация многоэлектронных состояний (и уровней) оболочки возможна и без количественного расчёта.

36. Это достигается с помощью анализа вектора возможного момента импульса, и делается это как бы в обход прямого анализа уровней энергии. Уровни энергии коллектива электронов можно классифицировать на основе суммарных орбитального и спинового моментов электронной оболочки. Эта классификация проста и наглядна.

37. Её основы следующие:

35.1. Важнейшей характеристикой каждого стационарного состояния электронной оболочки является полная энергия – суммарный энергетический уровень. Энергия стационарного уровня постоянна, т.е. является сохраняющейся скалярной величиной.

35.2. В качестве главного вклада в полную электронную энергию выделяется орбитальная энергия. Важнейшим квантовым признаком коллективного состояния оболочки является распределение электронов по АО - электронная конфигурация.

35.3. Момент импульса оболочки является векторно-аддитивной величиной и складывается из орбитальных моментов отдельных частиц. Вслед за конфигурацией вторая важнейшая характеристика оболочки - суммарный электронный орбитальный момент .

35.4. Спиновое движение не зависит от орбитального, но его свойства подобны орбитальным. По этой причине отдельно суммируются спиновые моменты. Возникает третья динамическая характеристика электронной оболочки – суммарный электронный спиновый момент .

35.5. Совокупность суммарных квантовых чисел (L, S) является единой квантовой характеристикой состояния оболочки. В пределах электронной конфигурации микросостояния с общими (L, S) относятся к общему суммарному уровню.

35.6. Распределяя наборы микросостояний по величинам (L, S), получаем разные энергетические подуровни электронной конфигурации.

35.7. Так уровень электронной конфигурации расщепляется на термы. У лёгких элементов это термы Рассел-Саундерса. Кратность вырождения терма равна числу представленных в нём микросостояний.

36. Удобно построить таблицу, в которой символически отмечены найденные выше микросостояния. Вдоль горизонтали таблицы расположим значения суммарного квантового числа MS и вдоль вертикали будем изменять значения суммарного орбитального числа ML . Каждое микросостояние внесём в эту табличку, отмечая его просто горизонтальной двусторонней стрелкой Û. Результат выглядит следующим образом:

ML

MS

+1

0

-1

+2

 

Û

+1

 

Û

ÛÛ

Û

0

 

Û

ÛÛÛ

Û

-1

 

Û

ÛÛ

Û

-2

 

Û

 
Страницы: 1 2 3 4 5 6

Информация о химии

Rf — Резерфордий

РЕЗЕРФОРДИЙ (лат. Rutherfordium), Rf, химический элемент IV группы периодической системы, атомный номер 104, атомная масса [261], наиболее устойчивый изотоп 263Rf. Свойства: радиоактивен. Металл, повидимому находится в твердом со ...

P — Фосфор

ФОСФОР (лат. Phosphorus), Р, химический элемент V группы периодической системы Менделеева, атомный номер 15, атомная масса 30,97376. Свойства: образует несколько модификаций: белый фосфор (плотность 1,828 г/см3, tпл 44,14 °С) ...

Вааге (Waage), Петер

Норвежский химик Петер Вааге (правильнее – Воге) родился в г. Флеккефьорд. Изучал медицину и минералогию в университете Кристиании (ныне Осло); после окончания университета изучал химию в Германии и Франции. Вернувшись в Нор ...