Методы защиты металлов от коррозии

Рефераты по химии / Теоретические основы электрохимической коррозии / Методы защиты металлов от коррозии
Страница 3

Примером повышения коррозионной стойкости металла легированием являются сплавы меди с золотом. Для надежной защиты меди необходимо добавлять к ней значительное количество золота. Атомы золота механически защищают атомы меди от их взаимодействия с окружающей средой. Несравненно меньшее количество легирующих компонентов требуется для повышения устойчивости металла, если эти компоненты способны образовывать с кислородом защитные пассивирующие пленки. Так введение хрома в количестве нескольких процентов резко увеличивает коррозионную стойкость сталей. Теоретический и практический интерес представляет повышение коррозионной стойкости легированием катодными добавками.

Скорость коррозии можно снизить изменением свойства коррозионной среды. Это достигается соответствующей обработкой среды, в результате которой уменьшается ее агрессивность или введением в коррозионную среду небольших добавок специальных веществ, так называемых замедлителей или ингибиторов коррозии.

Обработка среды включает в себя все способы, которые уменьшают концентрацию ее компонентов, особенно опасных в коррозионном отношении.) Так, например, в нейтральных солевых средах и пресной воде одним из самых агрессивных компонентов является кислород. Его удаляют деаэрацией (кипячение, дистилляция, барботаж инертного газа) или связывают при помощи соответствующих реагентов (сульфиты, гидразин и т. п.). Уменьшение концентрации кислорода должно почти линейно снижать предельный ток его восстановления, а следовательно, и скорость коррозии металла. Агрессивность среды может уменьшаться также при ее подщелачивании, снижении общего содержания солей и замене агрессивных ионов на менее агрессивные. При противокоррозионной водоподготовке широко применяется очистка воды ионообменными смолами.

Ингибиторы коррозии в зависимости от условий их применения разделяются на жидкофазные и парофазные или летучие. Жидкофазные ингибиторы разделяются на ингибиторы коррозии в нейтральных, щелочных и кислых средах. В качестве ингибиторов для нейтральных растворов чаще всего применяются неорганические вещества анионного типа. Их тормозящее действие связано, по-видимому, с окислением поверхности металла (нитриты, хроматы) или с образованием пленки труднорастворимого соединения между металлом, данным анионом, и, возможно, кислородом (фосфаты, гидрофосфаты). Исключение представляют в этом отношении соли бензойной кислоты, ингибирующий эффект которых связан, главным образом, с адсорбционными явлениями. Все ингибиторы для нейтральных сред тормозят преимущественно анодную реакцию, смещая стационарный потенциал в положительную сторону.

В качестве ингибиторов кислотной коррозии применяются почти исключительно органические вещества, содержащие азот, серу или кислород в виде амино-, имино-, тиогрупп, а также в виде карбоксильных, карбонильных и некоторых других групп. Согласно наиболее распространенному мнению действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл - кислота. В результате адсорбции ингибиторов наблюдается торможение катодного и анодного процессов, что снижает скорость коррозии. В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает величина заряда поверхности корродирующего металла, то есть величина его φ-потенциала. Применение φ-шкалы потенциалов позволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение φ-потенциала корродирующего металла позволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитывать коэффициенты торможения. Экспериментальные значения коэффициентов торможения кислотной коррозии железа в присутствии различных количеств диэтиламина, сопоставленные с расчетной прямой, приведены на рисунке 7. Расчетная прямая вычерчена по уравнению 19.

Страницы: 1 2 3 4

Информация о химии

Лемери (Lemery), Николя

Французский химик Николя Лемери родился в Руане; изучал фармацию в одной из аптек Руана. В 1666 г. в течение шести месяцев изучал химию в Париже, после чего отправился путешествовать по Франции в поисках авторитетных преподавателе ...

I — Иод

ИОД (йод) (лат. Iodum), I (читается «йод»), химический элемент с атомным номером 53, атомная масса 126,9045. Иод расположен в пятом периоде в группе VIIА периодической системы элементов Менделеева, относится к галоген ...

Усилитель поможет алмазу следить за атомами

Исследователи из Оксфорда и Сингапурского университета заявляют, что молекула-«усилитель», размещенная на острие алмаза, может оказаться полезной в обнаружении и идентификации отдельных атомов. Новая идея основана на ...