Интерполиэлектролитные комплексы

Рефераты по химии / Интерполиэлектролитные комплексы
Страница 7

Таким образом, термодинамические исследования указывают на значительные различия в структуре и свойствах поверхностных слоев.

МЕТАЛЛСОДЕРЖАЩИЕ ПОЛИМЕРНЫЕ МАТЕРИАЛЫ

Металлсодержащие полимерные материалы являются предметом интенсивных исследований в связи с перспективами их использования в различных областях техники и технологии. Для синтеза металлполимерных композитов можно использовать разные методы: обработка полимерных пленок парами металлов, химические реакции солей металлов в полимерных растворах с последующим выделением соответствующего полимера, полимеризация различных металлсодержащих мономерных систем.

Криохимический синтез металлполимерных пленок

Особый интерес представляет твердофазный криохимический синтез металлполимерных пленок. Процедура синтеза включает совместное низкотемпературное осаждение паров металла и мономера на подложку с

последующей низкотемпературной твердофазной полимеризацией образующейся системы. Если для инициирования реакции использовать излучение, то твердофазную полимеризацию некоторых мономеров можно осуществить даже при температуре 15 К. Особенность низкотемпературного синтеза состоит в том, что тепловое движение молекул в полимеризующейся системе «заморожено». В таких условиях в полимерной матрице фиксируются специфические металлорганические структуры и малые кластеры атомов металла, возникающие в результате низкотемпературной конденсации реагентов. При нагревании эти первичные продукты превращаются в металлические нанокристаллы. Важное преимущество рассматриваемого способа синтеза металлполимерного нанокомпозита заключается также в том, что формирование наночастиц металла происходит без участия стабилизаторов, которые адсорбируются на поверхности наночастиц и экранируют их. В данном случае не требуется также образования координационных связей между частицами и полимерным окружением. Ограничение размера частиц и их иммобилизация обусловлены жесткой решеткой полимерной матрицы, внутри которой происходит их зарождение и рост. Криохимический твердофазный синтез позволяет получать композитные пленки с высокой (до 50 объемных процентов) концентрацией нанокристаллов в полимерных матрицах различного типа, включая гидрофобные и неполярные полимеры. В результате появляется возможность выявления и исследования важных кооперативных эффектов, обусловленных взаимодействием между иммобилизованными наночастицами. В зависимости от природы и содержания, металлических наночастиц проводимость пленок «откликается» на различные соединения. Такие пленки могут «работать» как селективные и чувствительные сенсоры на состояние окружающей среды. Нанокомпозиты ПКС–металл обладают чрезвычайно высокой активностью в реакциях. Рассмотрены структура, физико-химические, сенсорные и каталитические свойства пленочных металлполимерных материалов, полученных совместным низкотемпературным осаждением паров металла и мономера на подложку с последующей низкотемпературной твердофазной полимеризацией соконденсата. В зависимости от природы металла и структуры мономера такой процесс позволяет получать металлсодержащие полимеры различного типа: металлорганические полимеры с атомами или кластерами металла в полимерной цепи, комплексы металл–полимер или частицы металла различного размера, физически иммобилизованные в полимерной матрице. Обсуждается связь между свойствами пленок и их структурой.

Влияние природы металла на продукты криохимического синтеза

Продукты криохимического синтеза зависят от природы металла. Так, совместная конденсация КС с Mg или Mn приводит к образованию комплексов различного типа между атомами или атомными кластерами взятого металла и молекулами КС. Совместная конденсация КС с Ag, Pb или PbS не приводит к появлению комплексов металл–КС или каких-либо других металлорганических соединений. В этом случае исходная мономерная система содержит частицы металла различного размера, физически иммобилизованные в твердом КС. Металлполимерные нанокомпозиты обычно являются хорошими катализаторами, обладают способностью катализировать и инициировать превращения галогенуглеводородов и многие другие процессы органического синтеза. Например, изомеризация хлоролефинов, взаимодействие полихлоралканов с насыщенными углеводородами. Их активность и в некоторых случаях селективность значительно превосходят значения, характерные как для малых кластеров и полиядерных комплексов металлов, так и для массивных и ультрадисперсных нанесенных металлов, полученных стандартными для приготовления таких катализаторов методами. Наблюдаемые эффекты не могут быть объяснены только величиной поверхности наноразмерных частиц металла в композите. Активность катализаторов не зависит от скорости перемешивания образцов, содержащих жидкие реагенты и пленку полимера, что указывает на высокую каталитическую способность.

Страницы: 2 3 4 5 6 7 8 9 10 11 12

Информация о химии

U — Уран

УРАН (лат. Uranium), U, химический элемент III группы периодической системы Менделеева, атомный номер 92, атомная масса 238,0289, относится к актиноидам. Свойства: радиоактивен, наиболее устойчивый изотоп 238U (период полураспада ...

Штерн (Stern), Отто

Немецко-американский физик Отто Штерн родился в Сорау (ныне Зори, Польша) и был старшим из пяти детей Оскара Штерна и Евгении Штерн (в девичестве Розенталь). Родители Штерна происходили из богатых семей, составивших состояния на м ...

Гельмгольц (Helmholtz), Герман Людвиг Фердинанд

Немецкий физик, математик, физиолог и психолог Герман Людвиг Фердинанд Гельмгольц родился в Потсдаме в семье учителя гимназии. В 1838 г. он окончил гимназию. Несмотря на интерес к физике, Гельмгольц не смог из-за недостатка средст ...