Методы совмещения наполнителя со связующим

Рефераты по химии / Методы совмещения наполнителя со связующим
Страница 4

Регулирование молекулярной массы полимерной матрицы в композициях на основе полиэтилена осуществляется введением в систему водорода или других агентов передачи цепи. При понижении молекулярной массы степень кристалличности полиэтилена возрастает, что приводит к увеличению жёсткости полимера и композита в целом, к возрастанию модуля упругости и предела текучести при растяжении и к снижению относительного удлинения при пределе текучести.

Метод полимеризационного наполнения можно применять не только для получения готовых композитов с заданным содержанием наполнителя, но и для модифицирования поверхности наполнителя. Это достигается путём формирования в процессе полимеризации на частицах наполнителя тонких полимерных покрытий, что можно рассматривать как аппретирование поверхности с помощью макромолекул.

Такие полимеризационномодифицированные наполнители – «концентраты» норпластов – можно использовать как самостоятельные сверхвысоконаполненные композиционные материалы, содержащие до 80-85% минерального сырья, например, для изготовления теплоизоляции, электро-, теплопроводящих и других материалов. Использование концентратов норпластов является перспективным, так как позволяет получать материалы, обладающие более хорошими физико-механическими свойствами по сравнению с механическими смесями аналогичного состава. В случае полиэтиленовых композитов эти различия особенно сильно проявляются в значении ударной вязкости – для композитов на основе полимеризационномодифицированных наполнителей эта характеристика оказалась в 1,5-2 раза выше, чем для соответствующих механических смесей. Увеличение до определённого предела толщины, образующегося на частицах наполнителя полимерного покрытия, которое представляет собой слой сверхвысокомолекулярного полиэтилена, приводит к улучшению прочностных свойств и жёсткости материалов на основе концентратов норпластов при одном и том же содержании минерального наполнителя [8].

Применение метода полимеризационного наполнения для введения наполнителей в полипропилен (ПП) привело к созданию новых материалов, обладающих необычным комплексом физических и механических характеристик [8]. Структура ПП, образующегося на поверхности наполнителя, во многом определяется природой наполнителя, условиями приготовления катализатора и проведения процесса. Графит, используемый как наполнитель, позволяет получить ПП с наибольшей степенью изотактичности (до 94-96%).

Исследование электрической проводимости полипропиленграфитовых композиций показало, что полимеризационное наполнение – новый перспективный путь получения тепло- и электропроводящих композиций. Композиты, полученные методом полимеризационного наполнения имеют гораздо большую электрическую проводимость, чем механические смеси ПП и графита. Различия в проводимости особенно существенны (в 107 раз) при низких объёмных концентрациях наполнителя С ≤ 8%. Для получения путём механического смешения композиций с такой же проводимостью необходимо ввести 30% графита, что приводит к снижению прочности при растяжении и сжатии в 1,55 раза композиты на основе ПП и графита обладают высокой однородностью.

Композиты на основе ПП и графита обладают ещё одним замечательным свойством – сохраняют пластичность и механическую прочность после многократных циклов охлаждения и нагревания от 300 до 4,2 К. изучение поверхности прессованных образцов таких норпластов показало, что норпласт (при одинаковых размерах частиц исходного графита) содержит частицы графита меньших размеров, равномерно распределённые в полимерной матрице, чем механические смеси, и расстояние между частицами наполнителя в норпласте значительно меньше.

Композиты на основе ПП и графита перспективны для применения в элементах электронагревательных устройств, покрытиях для экранов радиоэлектронной аппаратуры, тензодатчиках, эксплуатируемых при низких температурах, высокостабильных резистора, антистических покрытиях, электрофильтрах.

Страницы: 1 2 3 4 5 6 7 8

Информация о химии

Больцман (Boltzmann), Людвиг

Австрийский физик Людвиг Больцман родился в Вене в семье служащего. По окончании гимназии в Линце он поступил в Венский университет, где учился у Й.Стефана и Й.Лошмидта. В 1866 г. Больцман защитил докторскую диссертацию, работал а ...

Дюма (Dumas), Жан Батист Андрэ

Французский химик и государственный деятель Жан Батист Андре Дюма родился 14 июля 1800 г. в Алесе. Закончив Женевский университет, в 1823-1840 гг. Дюма работал в Политехнической школе в Париже; в 1835 г. стал профессором Политехни ...

Форма микролинз контролируется уровнем pH

Исследователи из Китая использовали обычный белок для создания оптических линз, диаметр которых составляет десятые доли микрометра. Фокусировка таких линз может изменяться просто за счет изменения значения pH окружающей среды. Ис ...