Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов

Рефераты по химии / Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов
Страница 8

Экспериментально метод исследования скорости взаимодействия осуществляли следующим образом. На ячейку (1) подавали гальваностатический импульс, в результате чего происходило электрохимическое разложение электролита с выделением иода на стеклоуглероде. При этом ячейка (1) превращалась в ячейку (21). Количество выделяющегося йода регулировали длительностью импульса.

Атом иода Уг h в структуре кристалла электролита может быть представлен

как ион I- с локализованной на нем дыркой. Поэтому здесь можно говорить не о давлении паров йода, а о его концентрации в электролите около электродов.

Предположим, что скорость взаимодействия лимитируется диффузией йода в зону реакции. В этом случае уравнение нестационарной диффузии Фика для концентрации йода у поверхности стеклоуглерода в ячейке единичной площади поперечного сечения будет выглядеть в удобной для графического анализа.

Саморазряд ячейки (21) определяется убылью йода как катодного материала. В условиях стационарной диффузии {при избытке йода на стеклоуглеродном электроде и предположении, что весь йод, продиффундировавший к медному электроду, реагирует с медью по реакции (23)}, для образца Cu4RbCl3l2 толщиной 2 мм убыль иода с углеродного электрода составляет 1,1х10г/см.

Таким образом, иод не может быть подходящим катодным материалом для элементов постоянной готовности с твердым электролитом СиД, т. к. скорость химического разложения электролита йодом сравнительно велика и продукты реакции имеют низкую ионную проводимость. Поэтому более целесообразны резервные элементы, приводимые в рабочее состояние непосредственно перед использованием путем электрохимического разложения электролита, при котором на одном из электродов выделяется медь, а на другом – йод.

В третьей главе приведены результаты исследования электродных реакций на медном электроде в электролите СШ при различных потенциалах.

Механизм и кинетика электродного процесса при потенциалах вблизи равновесного. В условиях массового производства активных масс для медного электрода и самих электродов трудно предотвратить образование оксидов на поверхности меди вследствие чрезвычайно высокой склонности меди к окислению. Можно предположить, что в этих условиях слой оксидов на поверхности меди будет практически всегда и вопрос лишь в толщине слоя. Поэтому основной задачей данной части работы было выяснение причины высокой поляризуемости медного электрода путем исследования влияния слоя оксидов на механизм и кинетику электродного процесса.

При температурах менее 500 °С на меди образуется закись меди Cu. Прямые измерения толщины слоя оксида в условиях, аналогичных нашим, дают около микрона. По литературным данным, в процессе дальнейшего отжига на поверхности закиси меди образуется окись меди СиО. Это приводит к возникновению в закиси меди электронных дырок и вакансий меди. Подвижность вакансий меди при комнатной температуре на несколько порядков величин меньше, чем подвижность дырок. Поэтому закись меди имеет чрезвычайно низкую ионную проводимость и является полупроводником типа. Поэтому при отжиге некоторое количество атомов металлической меди переходит из электрода в закись меди с образованием Си+ и подвижных электронов. Эти ионы занимают вакансии в решетке окисла, а электроны ассоциируют с дырками. Следовательно, в закиси меди около медного электрода образуется область, обедненная дырками.

В то же время твердый электролит СиД всегда содержит некоторое количество Си2*, поэтому на границе СиО/СиД может протекать реакция (5) генерации – рекомбинации дырок.

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Информация о химии

Металлоорганическая химия

Металлоорганическая химия — раздел химии, возникший на стыке органической химии и неорганической химии. Предметом изучения металлоорганической химии являются органические производные металлов, содержащие связь углерод-металл ...

Кун (Kuhn), Рихард

Австрийский химик Рихард Кун родился в Вене, в семье инженера Клементса Куна и учительницы начальной школы Анжелики (Родлер) Кун. Сначала обучением мальчика занималась его мать, а когда Куну исполнилось 9 лет, он поступил в деблин ...

Томсон (Thomson), Джозеф Джон

Английский физик Джозеф Джон Томсон родился в Читхэм-Хилл, пригороде Манчестера, в семье Джозефа Джеймса и Эммы (в девичестве Суинделлс) Томсон. Поскольку отец, книготорговец, хотел, чтобы мальчик стал инженером, его в возрасте че ...