Разделение смеси бензол – циклогексан – этилбензол – н-пропилбензол экстрактивной ректификацией

Рефераты по химии / Разделение смеси бензол – циклогексан – этилбензол – н-пропилбензол экстрактивной ректификацией
Страница 16

Как видно из таблицы 8, минимальные энергозатраты в кипятильниках колонн обеспечиваются при следующих значениях рабочих параметров: температуре подачи ЭА 1000С, расходе ЭА 70 моль/час, уровнях подачи экстрактивного агента и исходной смеси на 4 и 11 тарелки соответственно.

Заметим, что независимо от температуры подачи ЭА оптимальные уровни подачи экстрактивного агента и исходной смеси находятся на 4 и 11 (10-ой для Т=900С) тарелках соответственно.

Далее рассмотрим изменение энергозатрат в колонне регенерации от положения тарелки питания при различных температурах подачи экстрактивного агента. Результаты представим в табл. 9.

Таблица 9. Зависимость энергозатрат в колонне регенерации от положения тарелки питания

Температура, оС

Оптимальная тарелка питания

Энергозатраты, ГДж/час

100

11

22,550

90

11

22,208

80

11

22,871

70

11

22,942

60

11

23,020

Как видно из табл. 9, с изменением температуры экстрактивного агента положение оптимальной тарелки питания в колонне регенерации не меняется.

Таким образом, мы провели параметрическую оптимизацию схемы экстрактивной ректификации. В итоге нами был получен набор оптимальных параметров работы технологической схемы, при котором энергопотребление минимально:

· температура подачи ЭА 100 оС;

· оптимальный расход ЭА 70 моль/ч (F:ЭА = 1:0,7);

· NЭА/NF = 4/11;

· тарелка питания колонны регенерации - 11;

Определение оптимальных рабочих параметров экстрактивной ректификации по схеме с использованием разделяющего агента во второй колонне

Рассмотрим технологическую схему разделения четырехкомпонентной азеотропной смеси с использованием тяжелолетучего экстрактивного агента, представленную на рис. 10.

Рис. 10. Принципиальная схема разделения четырехкомпонентной азеотропной смеси

Исходная смесь, содержащая циклогексан, бензол, этилбензол, н-пропилбензол, поступает на разделение в колонну 1, где происходит отделение зеотропной и азеотропной составляющих друг от друга. Верхним продуктом колонны 1 является фракция азеотропообразующих компонентов – циклогексан-бензол, а кубовым продуктом – смесь этилбензола и н-пропилбензола, которая далее разделяется в простой двухсекционной колонне 4. Разделение смеси циклогексан – бензол происходит с применением традиционного комплекса экстрактивной ректификации с тяжелолетучим разделяющим агентом (анилин). Азеотропную смесь подают в середину колонны 2, а экстрактивный агент – в верхнюю её часть. Таким образом, происходит выделение циклогексана в качестве дистиллата колонны 2. Оставшуюся смесь бензола и анилина разделяют в колонне регенерации 3, бензол отбирают с верха колонны, а экстрактивный агент – с низа и направляют на рецикл в колонну 2.

Рассматриваемая технологическая схема относится ко второй группе схем экстрактивной ректификации, в которой первоначально происходит фракционирование смеси, а разделяющий агент применяется во второй колонне.

Снижение энергозатрат на разделение рассмотренной технологической схемы можно добиться нахождением оптимальных параметров работы её экстрактивного комплекса (при фиксированных количестве, составе и температуре исходной смеси и заданном качестве продуктовых потоков необходимо определить оптимальные температуру, расход ЭА, а также уровни ввода исходной смеси и разделяющего агента).

Все расчеты проводили на 100 кг/ч четырехкомпонентной смеси эквимолярного состава. Качество продуктовых фракций задавали равным 99% мольн. целевого компонента, экстрактивного агента – 99,9%. Разделяемую смесь подавали в колонну при температуре кипения.

На первом этапе мы исследовали влияние на энергозатраты температуры подачи в колонну ЭР при фиксированном соотношении исходная смесь : ЭА = 1 : 2.

Мы рассчитали энергозатраты при температурах подачи ЭА в колонну 60, 70, 80, 90 и 100 °С. При этом для каждой температуры определили положение тарелок питания, при котором энергопотребление в кубе минимально. Результаты расчета приведены в табл.10 и рис. 11.

Страницы: 11 12 13 14 15 16 17 18 19 20 21

Информация о химии

Биохимия

Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия) — наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности. Термин «биохимия» ...

Дёберейнер (Dobereiner), Иоганн Вольфганг

Немецкий химик Иоганн Вольфганг Дёберейнер родился в баварском городке Хоф в семье извозчика. Бедственное материальное положение семьи не позволило ему получить среднее образование, поэтому Дёберейнер занимался самостоятельно и из ...

Хауптман (Hauptman), Херберт Аарон

Американский биофизик Херберт Аарон Хауптман родился в Нью-Йорке в семье Израиля и Лич (в девичестве Розенфельд) Хауптман. Он вырос в Бронксе и получил среднее образование в школе Трунсенда Харриса, которую окончил в 1933 г. Углуб ...