Технологическая схема переработки сырья

Рефераты по химии / Переработка золотосодержащего сырья / Технологическая схема переработки сырья
Страница 7

Процесс протекает с образованием катиона Ni2+не задерживаемого анионитом, и полной регенерацией цианида. Раствор NH4NO3c концентрацией 250 г/л десорбирует никель частично (около 40%). Растворы NaCN, NaOH, NaCl практически не десорбируют цианистый никель.

Десорбция ферроцианид-иона [Fe(CN)6]4-. Ферроцианид-ион эффективно десорбируется с анионита растворами NaCN с концентрацией 50-100 г/л, лучше при температуре до 50-60 °С. Процесс протекает по реакции ионного обмена:

*R4Fe(CN)6+4NaCN=*4RCN+Na4Fe(CN)6.

Анион [Fe(CN)6]4-хорошо десорбируется также растворами 2—3 н. NaCl (120-180 г/л) с содержанием 0,25-0,5 н. NaOH (10-20 г/л), лучше при температуре 50—60 °С, по реакции обмена с ионом С1-. Достаточно полно анион [Fe(CN)6]4-элюируется растворами NH4SCN с концентрацией 75-225 г/л с переходом смолы в роданид-форму RSCN. После серно-кислотной обработки смолы для десорбции цинка, никеля и цианид-иона и десорбции золота, серебра и меди слабокислым раствором ТМ можно элюировать железо и остатки меди раствором состава: 160 г/л NH4NO3 +50 г/л NH4OH + 40 г/л NaOH при температуре 25 °С. Расход элюирующего раствора — 7 объемов на 1 объем смолы. После обработки железо в смоле находится в форме сорбированного ферроцианид-иона R2Fe(CN)6 и в виде осадков солей Ni2Fe(CN)6, Zn2Fe(CN)6 и др., не растворимых в кислой среде, медь - в виде осадка простого цианида CuCN.В щелочной среде соли ферроцианида с тяжелыми металлами разлагаются с образованием осадка гидроксидов Zn(ОН)2 и Ni(ОН)2 и ферроцианид-иона [Fe(CN)6]4-.Цианид меди и гидраты оксидов металлов растворяются в аммиачном растворе по реакциям:

· CuCN+NH4NO3+2NH4OH=Cu(NH3)2NO3+NH4CN+2H2O;

· Zn(OH)2+2NH4NO3+2NH4OH=Zn(NH3)4(NO3)2+4H2O;

· Ni(OH)2+2NH4NO3+3NH4OH=Ni(NH3)5(NO3)2+5H2O;

Образующиеся комплексные катионы меди, цинка и никеля переходят в элюат. Ферроцианид-ион десорбируется со смолы ионом N03- по реакции обмена:

*R4Fe(CN)6+4NO3-=*4RNO3+[Fe(CN)6]4-.

Анион [Fe(CN)6]4-частично (до 40%) элюируется растворами 2—4 н. HNO, и мало элюируется растворами Н2SO4 и NaOH. [2]

Десорбция [Co(CN)4]2-. Цианистый анион кобальта содержится в насыщенном анионите обычно в малом количестве (не более 1 мг/г), но десорбция его затруднена. Наиболее эффективно [Co(CN)4]2-элюируется раствором 150-375 г/л NH4SCN, частично (до 30-60%) - растворами 225-250 г/л NH4NO3, 180 г/л NaCI + 20 г/л NaOH, 50-100 г/л NaCN. Десорбция кобальта возрастает с повышением температуры до 50-60 °С. Десорбция цианид-иона CN-. Цианид-ион регенерируется растворами серной или соляной кислот с концентрацией 10—20 г/л по реакции:

*2RCN+H2SO4=*R2SO4+2HCN.

Цианистоводородная кислота HCN отгоняется из золота, поглощается раствором NaOH или Са(ОН)2 и в виде цианистой щелочи NaCN или Ca(CN)2 возвращается в процесс цианирования.

Цианид-ион CN- десорбируется также растворами NH4SCN, NH4NO3, NaCI, NaOH и др., анионы которых замещают его в смоле.

Десорбция примесных анионов S2O32- , SO32- , SiO32- и др. успешно осуществляется растворами NaOH с концентрацией 40—50 г/л. В процессе регенерации анионитов необходимо добиваться наиболее полной десорбции как благородных металлов, так и примесей. Остающиеся на смоле примеси при повторном ее использовании в процессе сорбции ухудшают кинетику процесса, уменьшают емкость смолы по благородным металлам и увеличивают потери растворенного золота в жидкой фазе хвостов. Влияние неполной регенерации тем значительнее, чем больше примесей остается в анионите. Как показывает практика, содержание остаточных компонентов в анионите после регенерации может составлять: золота - не более 0,1—0,3 мг/г, примесей - не более 3—5 мг/г воздушно-сухого сорбента. При величине остаточных примесей более 10—12 мг/г наблюдается значительное увеличение концентрации золота в растворе после сорбции, т.е. увеличиваются потери растворенного золота с хвостами. [2]

Страницы: 2 3 4 5 6 7 8

Информация о химии

Химическое сродство

В течение всего 17 в. химики, рассуждая о «сродстве» – тенденции атомов к образованию соединений, – следовали идеям Бехера и Шталя, которые классифицировали все вещества в соответствии с их способностью реа ...

Герцберг (Herzberg), Герхард

Германо-канадский физик Герхард Герцберг родился в Гамбурге, в семье Эллы (в девичестве Бибер) и Альбина Герцберг. Его ранние школьные годы прошли в Гамбурге; степень бакалавра (1927) и доктора (1928) он получил в Дармштадтском те ...

Бертолле (Berthollet), Клод Луи

Французский химик Клод Луи Бертолле родился в г. Таллуаре (Савойя). Окончил Туринский университет (1768). В 1770-1783 гг. – практикующий врач и аптекарь (с 1772 г. в Париже), лейб-медик при дворе герцога Орлеанского. Одновре ...