Иммобилизованные соединения

Рефераты по химии / Иммобилизованные соединения
Страница 5

Найдены комплексы, довольно легко иммобилизуемые в желатиновом массиве. Ими оказались гексацианоферраты(II) p-, d- и f-элементов, у которых с жесткостью фиксации в желатине удачно сочетаются оптимальная кинетическая лабильность, стабильность и весьма низкая растворимость в воде. Внешне схема их иммобилизации весьма проста, хотя сам синтез всей системы — специфический и довольно трудоемкий процесс. Удобный исходный объект для ее осуществления — желатиновая матрица с иммобилизованным галогенидом серебра, а это не что иное, как светочувствительные слои современных фотоматериалов. Степень дисперсности галогенида в них отнюдь не молекулярная, но галогенид можно легко превратить в Ag (для этого используются давно и хорошо известные в фотографической практике процессы экспонирования — “засветки”, — проявления и фиксирования), и тогда размеры частиц иммобилизованного вещества уже сопоставимы с размерами крупных кластеров. А уж дальше посредством серии специфических химических реакций иммобилизованное в желатиновой матрице серебро можно заместить очень широким ассортиментом металлокомплексов вообще и гексацианоферратов(II), в частности, сохранив при этом — что очень важно — уже достигнутый молекулярный уровень дисперсности частиц. В результате в желатине окажутся иммобилизованными металлгексацианоферраты (МГФ). Проще всего такую систему получить в три стадии. На первой — содержащееся в матрице серебро окисляется гексацианоферратом(III) калия в Ag4[Fe(CN)6]:

{4Ag} + 4K3[Fe(CN)6] ® {Ag4[Fe(CN)6]} + 3K4[Fe(CN)6]

(в фигурных скобках— формулы иммобилизованных соединений). На второй — образовавшийся гексацианоферрат(II) серебра взаимодействует с галогенидом того или иного металла, например кобальта:

{Ag4[Fe(CN)6]} + 2CoCl2 ® {Co2[Fe(CN)6]+4AgCl}.

И наконец, на третьей — галогенид серебра удаляется из системы под действием раствора тиосульфата натрия:

{Co2[Fe(CN)6]+4AgCl} + 8Na2S2O3 ® {Co2[Fe(CN)6]} + 4Na3[Ag(S2O3)2] + 4NaCl.

В ряде случаев можно получить подобные системы с иммобилизованным металлгексацианоферратом(II) и более коротким путем — в две стадии. На первой — иммобилизуемый комплекс осаждается вкупе с гексацианоферратом(II) или галогенидом серебра, на второй — соединения серебра удаляются из желатинового массива опять-таки тиосульфатом [2].

Как известно, молекулы желатина состоят из трех полипептидных цепей — двух a1 и одной a2 — с почти одинаковой молекулярной массой. Цепи эти соединены меж собой ограниченным числом поперечных связей, и неудивительно, что желатиновые массивы по своей эластичности напоминают резину. Такая структура не допускает формирования жестких кристаллических блоков и удобна для создания матричных систем, так как имеет множество ячеек, куда при подходящих условиях могут “забраться” молекулы самых разных соединений. Даже будучи заполненными ими, такие ячейки сохраняют определенную свободу перемещения в пространстве. Вот почему на основе этого полимера можно получить матричные системы с практически однородным распределением иммобилизованного вещества. Перечень ценных свойств желатина этим не ограничивается, но сейчас важно другое. “Просвечивание” матриц с иммобилизованным веществом потоком электронов показало, что все они прозрачны по отношению к нему. А это значит, что содержащиеся гексацианоферраты(II) металлов и в самом деле имеют молекулярный уровень дисперсности. В соответствии со своими структурами в твердой фазе они являют собой координационные полимеры с относительно небольшой молекулярной массой и занимают пустоты между молекулами желатина. У атомов железа и другого металла, например кобальта, находящихся близко к граничной поверхности этих структур, всегда имеются вакантные координационные места.

Страницы: 1 2 3 4 5 6 7 8

Информация о химии

Виттиг (Wittig), Георг Фридрих Карл

Немецкий химик Георг Фридрих Карл Виттиг родился в Берлине, в семье профессора изящных искусств Берлинского университета Густава Виттига и Марты (Домбровски) Виттиг. Окончив гимназию Вильгельма в Касселе, он в 1916 г. поступил в Т ...

No — Нобелий

НОБЕЛИЙ (лат. Nobelium), No, искусственно полученный радиоактивный химический элемент III группы периодической системы, атомный номер 102, относится к актиноидам. История: первые надежные сведения об изотопах 251No и 256No получе ...

Аналитическая химия

Предмет и задачи аналитической химии (АХ). Значение АХ в производственной и научно-исследовательской деятельности человека. Химические и физико-химические методы анализа. Качественный и количественный анализ. ...