Белки

Рефераты по химии / Белки, углеводы, жиры и липоиды / Белки
Страница 2

Строение молекулы белка. Если учесть, что размер каждого аминокислотного звена составляет около 3 А, то очевидно, что макромолекула белка, которая состоит из нескольких сот аминокислотных звеньев, должна была бы представлять собой длинную цепь. В действительности же макромолекулы белка имеют вид шариков (глобул). Следовательно, в нативном белке («нативус» — природный, лат.) полипептидная цепь каким-то образом закручена, как-то уложена. Исследования показывают, что в укладке полипептидной цепи нет ничего случайного или хаотического, каждому белку присущ определенный, всегда постоянный характер укладки. В сложной структуре белковой макромолекулы различают несколько уровней организации. Первым, наиболее простым из них является сама полипептидная цепь, т. е. цепь аминокислотных звеньев, связанных между собой пептидными связями. Эта структура называется первичной структурой белка; в ней все связи ковалентные, т. е. самые прочные химические связи. Следующим, более высоким уровнем организации является вторичная структура, где белковая нить закручивается в виде спирали. Витки спирали располагаются тесно, и между атомами и аминокислотными радикалами, находящимися на соседних витках, возникает притяжение. В частности, между пептидными связями, расположенными на соседних витках, образуются водородные связи (между NH- и СО- группами). Водородные связи значительно слабее ковалентных, но, повторенные многократно, они дают прочное сцепление. Полипептидная спираль, «прошитая» многочисленными водородными связями, представляет достаточно устойчивую структуру. Вторичная структура белка подвергается дальнейшей укладке. Она сворачивается причудливо, но вполне определенно и у каждого белка строго специфично. В результате возникает уникальная конфигурация, называемая третичной структурой белка. Связи, поддерживающие третичную структуру, еще слабее водородных. Они называются гидрофобными. Это — силы сцепления между неполярными молекулами или неполярными радикалами. Такие радикалы встречаются у ряда аминокислот. По той же причине, по какой распыленные в воде частицы масла или какого-нибудь, другого гидрофобного вещества слипаются в капельки, происходит слипание гидрофобных радикалов полипептидной цепи. Хотя гидрофобные силы сцепления относятся к слабейшим связям, но благодаря их многочисленности они в сумме дают значительную энергию взаимодействия. Участие «слабых» связей в поддержании уникальной структуры белковой макромолекулы обеспечивает достаточную ее устойчивость и вместе с тем высокую подвижность. У некоторых белков в поддержании белковой макромолекулы существенную роль играют так называемые S—S (эс—эс связи) — прочные ковалентные связи, возникающие между отдаленными участками полипептидной цепи.

Выяснение всех деталей строения белковой макромолекулы, т. е. полная характеристика ее первичной, вторичной и третичной структуры, — очень сложная и длительная работа. Однако для ряда белков эти данные уже получены. На рисунке 66 изображена структура белка рибонуклеазы. Рибонуклеаза — один из первых белков, структура которого расшифрована полностью. Как видно из рисунка 66, первичная структура рибонуклеазы образована 124 аминокислотными остатками. Счет аминокислотных остатков в полипептидной цепи принято вести от аминокислоты, сохранившей NH2-группу (N — конец цепи), последней аминокислотой считается аминокислота, сохранившая карбоксильную группу (С — конец цепи). Таким образом, первая по счету аминокислота рибонуклеазы — лизин, вторая — глютаминовая кислота и т. д. Достаточно исключить или переставить одну аминокислоту в цепи — и вместо рибонуклеазы возникнет другой белок с другими свойствами.

Для упрощения на рисунке не показано, как закручивается в спираль полипептидная цепь, а третичная структура изображена в плоскости бумаги. Обратите внимание на «сшивки» между 26-й и 87-й аминокислотами, между 66-й и 73-й, между 56-й и 111-й, между 40-й и 97-й. В этих местах между радиолами аминокислоты цистеина, находящимися на удаленных участках полипептидной цепи, образуются —S—S-связи.

Денатурация белка. Чем выше уровень организации белка, тем слабее поддерживающие его связи. Под влиянием различных физических и химических факторов — высокой температуры, действия химических веществ, лучистой энергии и др.— «слабые» связи рвутся, структуры белка — третичная, вторичная — деформируются, разрушаются и свойства его изменяются. Нарушение нативной уникальной структуры белка называется денатурацией. Степень денатурации белка зависит от интенсивности воздействия на него различных факторов: чем интенсивнее воздействие, тем глубже денатурация.

Страницы: 1 2 3 4

Информация о химии

Робинсон (Robinson), Роберт

Английский химик Роберт Робинсон родился в имении Рафферд, неподалеку от Честерфилда (графство Дербишир). Он был старшим из пяти детей Уильяма Брэбери Робинсона и его второй жены Джейн (Дэйвинпорт) Робинсон. С 1874 г. семья Робинс ...

Ds — Дармштадтий

ДАРМШТАДТИЙ (Дармштаттий) — (лат. Darmstadtium, бывший унуннилий (ununnilium)), Ds, химический элемент VIII группы периодической системы, атомный номер 110, атомная масса [271], наиболее устойчивый изотоп 271Ds. Свойства: р ...

Анальгин

Синонимы:натрия 2,3-диметил-1-фенил-4-метиламинопиразолон-5-N-метансульфоната гидрат Внешний вид: бесцветн. игольчатые кристаллы Брутто-формула (система Хилла): C13H18N3NaO5S Молекулярная масса (в а.е.м.): 351,36 Растворимос ...