Разложение оксидов азота гетерогенными восстановителями

Рефераты по химии / Способы восстановления оксидов азота / Разложение оксидов азота гетерогенными восстановителями
Страница 1

При высоких температурах (500-1300°С) дефиксация азота в отходящих газах может быть проведена на твердых углеродсодержащих материалах, в частности на угле, коксе, графите. В таких процессах углерод выполняет функции как катализатора, так и топлива. Каталитическое действие углерода связано с образованием комплексов углерод – кислород:

С + NO = (С-О) + 1/2N2

(С-О) + NO = СО2 + 1/2N2

Однако сравнительно быстрая потеря активности такими катализаторами приводит к тому, что разложение оксидов азота, особенно в начальном интервале указанной температурной области, происходит неполно. В этой связи с целью увеличении степени разложения NOх предложено, например, вводить в графит карбонат натрия. С увеличением температуры степень и скорость процесса восстановления возрастают: при 800°С степень восстановления NOх при использовании кокса может достигать 96%, а при 1000°С приближается к 100%. Высокие температуры таких процессов отрицательно сказываются на их технико-экономических показателях, хотя значительная часть энергетического потенциала обезвреживаемых газов может быть полезно использована.

Сравнительный анализ эффективности восстановителей

Очистка дымовых газов путем восстановления оксида азота до азота и кислорода на катализаторах представляет собой сложную задачу в связи со следующими обстоятельствами:

наличием в дымовых газах золы и оксидов серы, загрязняющих и отравляющих катализатор;

потребностью в более высокой температуре газов у катализатора (обычно порядка 400°С по сравнению с температурой золоулавливания). На практике в теплоэнергетике преимущественно развиваются два направления очистки дымовых газов от окислов азота: селективное некаталитическое восстановление окислов азота (СНКВ-процесс) и селективное каталитическое восстановление окислов азота (СКВ-процесс). В качестве восстановителя используются аммиак или химические соединения, способные легко разлагаться с выделением аммиака. В табл. 1 приведены физико-химические свойства некоторых сравнительно допустимых азотсодержащих соединений, которые могут быть использованы при СНКВ и СКВ-процессе. Основное преимущество веществ представленных в табл.1, по сравнению с аммиаком и аммиачной водой – значительно меньшая токсичность, что порой оказывается определяющим при согласовании размещения склада реагента с местными природоохранными организациями. Сложности с применением азотсодержащих соединений начинаются при проектировании систем дозирования и раздачи реагента в котле. В отличие от аммиака и моноэтаноламина, названные в табл.1, реагенты не удается перевести в газообразное состояние, поскольку при температурах плавления они начинают разлагаться, образуя высокомолекулярные соединения с повышенной температурой плавления. В связи с этим принятая в случае использования аммиака технологическая схема с разбавлением реагента пором, воздухом или дымовыми газами не может быть применена. Все эти реагенты должны непосредственно вводиться в соответствующую температурную область котла или в виде водных растворов (растворимые в воде ацетамид, моноэтаноламин, мочевина и уротропин), или в виде суспензий (циануровая кислота и меламин). Они перед подачей в реактор должны быть конвертированы до аммиака. Это ограничение существенно, и поэтому набор реагентов в основном ограничивается сжиженным аммиаком (несколько изменяется лишь схема дозированной подачи), аммиачной водой и мочевиной, которая сравнительно легко гидролизуется при умеренных температурах. Механизм реакции гидролиза и разложение реагентов:

CH 3 CONH 2 + H 2 O = NH 3 + CH 3 COOH

(H 2 CN) 2 +6 H 2 O = 6 NH 3 + 3 CO 2

(NH 2 ) 2 CO + H 2 O = 2 NH 3 + CO 3

(H NCO) 3 +3 H 2 O = 3 NH 3 + 3 CO 2

(CH 2 ) 6 N 4 + 6 H 2 O = 4 NH 3 + 6 CH2O

В таблице также приведены минимальные расходы реагентов на 1 т нейтрализованного NOх (100%-я селективность). Из этих данных следует, что удельный расход всех перечисленных реагентов значительно выше, чем при использовании аммиака. В наименьшем количестве расходуется меламин. Аммиак является единственно доступным восстановителем избирательного действия, способным восстановить примеси оксида азота до азота (или малотоксичной закиси азота) при наличии кислорода в дымовых газах.

Страницы: 1 2

Информация о химии

Ne — Неон

НЕОН (лат. Neon), Ne (читается “неон”), химический элемент с атомным номером 10, атомная масса 20,1797. Неон относится к группе инертных, или благородных, газов (группа VIIIA периодической системы), он завершает 2-й пе ...

Be — Бериллий

БЕРИЛЛИЙ (лат. Beryllium), Ве, химический элемент II группы периодической системы, атомный номер 4, атомная масса 9,01218; относится к щелочноземельным металлам. Химический символ элемента Be читается «бериллий». В пр ...

Tl — Таллий

ТАЛЛИЙ (лат. Тhallium), Tl, химический элемент III группы периодической системы, атомный номер 81, атомная масса 204,383. Свойства: серебристо-белый металл с сероватым оттенком, мягкий и легкоплавкий; плотность 11,849 г/см3, tпл ...