Способы увеличения скорости процесса

Рефераты по химии / Теоретические основы химической технологии / Способы увеличения скорости процесса
Страница 2

Для процессов с участием газовой фазы применяются давления порядка одной и нескольких десятков мегапаскалей (десятков и сотен атмосфер). Для процессов полимеризации и других синтезов в жидкой фазе эффективны давления в сотни МПа.

В твердофазных процессах ввиду незначительной сжимаемости твердых тел эффективными являются лишь сверхвысокие давления, вызывающие перестройку электронных оболочек, деформацию кристаллов и сдвиг фазового равновесия. Так, из углерода, растворенного в металлических расплавах при сверхвысоких давлениях до 10 тыс. МПа и температурах до 2400°С, производят искусственные алмазы.

3. Регулирование температуры процесса как средство повышения движущей силы применяется главным образом в сорбционных и десорбционных процессах. Понижая температуру жидкой фазы, уменьшают парциальное давление паров газового (парового) компонента над ней, и со­ответственно увеличивают движущую силу Дс и общую скорость процесса.

4. Отвод продуктов реакции из реакционной зоны увеличивает суммарную скорость обратимой реакции за счет уменьшения или увеличивает движущую силу гетерогенного процессов.

В химических реакциях повышение температуры увеличивает скорость благодаря росту константы скорости к.

Из газовой смеси продукт реакции может отводиться конденсацией, избирательной абсорбцией или адсорбцией. Во многих производствах для этого газовую смесь выводят из реакционного аппарата, а затем после отделения продукта (конденсации, абсорбции) вновь вводят в аппарат - получаются замкнутые (циклические, круговые) процессы, например синтез аммиака, синтезы спиртов и т.п. В этих случаях реакция в газовой фазе происходит стадиями. В каждой стадии концентрация продукта с* возрастает до максимально допустимой величины, а затем снижается до величины, близкой к нулю при абсорбции (в меньшей мере при конденсации), затем цикл может повторяться многократно. Из жидкий смеси продукт реакции отводится в зависимости от его свойств осаждением в виде кристаллов, десорбцией (испарением) в виде паров или адсорбцией на твердом поглотителе. Осаждение кристаллов с последующим возвратом маточного раствора в процесс часто применяется в технологии минеральных солей, например в производстве хлорида калия, сульфата аммония и в других производствах. Десорбция паров растворенного вещества используется для повышения емкости (Ас) растворителя при очистке газов.

Увеличение константы скорости процесса может достигаться повышением температуры взаимодействующей системы; применением катализаторов; усилением перемешивания реагирующих масс (турбулизацией системы).

1. Повышение температуры приводит к сильному увеличению констант скоростей реакций и в меньшей степени к увеличению коэффициентов диффузии. В результате суммарная скорость процесса увеличивается при повышении температуры до некоторого предела, при котором большое значение приобретают скорости обратной или побочных реакций, точнее увеличиваются константы скорости. Влияние температуры реагирующих масс на константу скорости реакции для большинства процессов, идущих в кинетической области, определяется формулой Аррениуса.

Согласно правилу Вант-Гоффа, температурный коэффициент обычно равен 2-4, т.е. при повышении температуры на 10° скорость реакции увеличивается в 2-4 раза. Однако это правило приближенно применимо лишь в области средних температур (10-200°С) при энергиях активации порядка 60000-120000 Дж/моль. Температурный коэффициент у уменьшается с понижением энергии активации и повышением температуры, приближаясь к единице в области высоких температур.

Влияние температуры на скорость процессов в диффузионной области меньше, чем в кинетической.

Диффузия в жидкостях протекает еще медленнее, чем в газах, вследствие высокой вязкости жидкостей. Значения коэффициента диффузии в растворах в 104-105 раз меньше, чем в газах

Наиболее медленна диффузия в твердой среде. При обычной температуре коэффициент диффузии для твердых веществ имеет порядок см2/год - см2/век. Повышение температуры, увеличивая скорость и амплитуду колебания атомов в кристаллах, резко повышает скорость диффузии. Так, при 900-1000°С диффузия углерода в железо при термической обработке металлов происходит за несколько часов.

Вследствие большего температурного коэффициента скорости реакции, чем диффузии, некоторые химико-технологические процессы (например, газификация топлива, обжиг сульфидных руд) при повышении температуры переходят из кинетической области в диффузионную. Однако диффузия не влияет на равновесие химических процессов.

Как известно, скорость прямой реакции должна все время увеличиваться при повышении температуры. Однако в производственной практике имеется много причин, ограничивающих возможность интенсификации процесса повышением температуры. Для всех обратимых экзотермических процессов, протекающих с выделением теплоты, с повыше­нием температуры уменьшается константа равновесия, соответственно снижается равновесный выход продукта и при некотором повышении температуры кинетика процесса вступает в противоречие с термодинамикой его; несмотря на повышение скорости прямого процесса, выход ограничивается равновесием. При низких температурах действительный выход определяется скоростью прямого процесса и потому растет с повышением температуры; при высоких температурах скорость обратного процесса увеличивается сильнее, чем прямого процесса; выход, ограниченный равновесием, снижается с ростом температуры. Следовательно, беспредельное повышение температуры нецелесообразно.

Страницы: 1 2 3

Информация о химии

Лавуазье (Lavoisier), Антуан Лоран

Антуан Лоран Лавуазье родился 26 августа 1743 г. в Париже в семье адвоката. Первоначальное образование он получил в колледже Мазарини, а в 1864 г. окончил юридический факультет Парижского университета. Уже во время обучения в унив ...

Прегль (Pregl), Фриц

Австрийский химик Фриц Прегль родился в Лайбахе (ныне Любляна, Югославия), в семье служащего казначейства Раймунда Прегля и Фредерики (Шлакер) Прегль. Мальчик рано потерял отца и в 1887 г., окончив гимназию в Лайбахе, переехал с м ...

I — Иод

ИОД (йод) (лат. Iodum), I (читается «йод»), химический элемент с атомным номером 53, атомная масса 126,9045. Иод расположен в пятом периоде в группе VIIА периодической системы элементов Менделеева, относится к галоген ...