Физиологическая роль йода

Рефераты по химии / Физико-химические свойства йода и его соединений / Физиологическая роль йода
Страница 2

Поступающие из плазмы крови в ткани тиреоидные гормоны освобождаются от связи со специфическими белками плазмы и выполняют свою гормональную функцию. Изучение гормональной активности различных йодированных тиронинов показало, что только 3,5-ди-йодтиронин, 3,3',5-трийодтиронин и тироксин обладают гормональной активностью, прочие соединения этого класса инертны. Максимальной активностью обладает 3,З'5-трийодтиронин, активность тироксина в четыре раза ниже. Для того чтобы соединение обладало гормональной активностью, необходимо и достаточно наличие двух атомов йода в положениях 3 и 5 внутреннего ароматического кольца молекулы тиронина.

Каков же механизм гормонального действия тиреоидных гормонов? Исследования показывают, что первой фазой гормонального действия является присоединение молекулы гормона к белку за счет амино- и карбоксильной групп аланинового остатка. Затем атом йода, находящийся в положении 5 внутреннего ароматического ядра, отдает один электрон и приобретает положительный заряд. Эта форма йода обладает максимальной биологической активностью. Отданный йодом электрон затрачивает часть своей энергии на синтез аденозинтрифосфорной кислоты из аденозиндифосфата и фосфорной кислоты. Энергия электрона может акцептироваться также ди- и трифосфопиридиннуклеотидом. В конечном итоге энергия запасается в виде макроэргических связей.

Положительно заряженный атом йода захватывает электрон с низкой энергией из сопряженной окислительной цепи. При этом молекула гормона возвращается к своему исходному состоянию, в котором она снова может служить донором электрона, обладающего высокой энергией. Эта модель объясняет появление источника энергии в виде слабого электрического тока, при помощи которого создаются макроэргические связи и который лежит в основе такой важной функции тиреоидных гормонов, как теплообразование.

В чем же состоит уникальность действия тиреоидных гормонов? Почему йод не может быть заменен никаким другим химическим элементом? В большинстве ферментных систем, осуществляющих запас энергии за счет окислительно-восстановительных процессов, необходимым условием функционирования является синхронный перенос двух электронов с молекулы-донора на субстрат. Там, где требуется перенос одного электрона, тиреоидные гормоны становятся абсолютно незаменимыми. Кроме того, перенос электрона тиреоидными гормонами осуществляется на субмолекулярном уровне; он не связан с перестройкой молекулярной структуры гормона, а потому каждая молекула гормона может обеспечить огромное количество биохимических превращений.

Исследования показали, что йодсодержащие гормоны содержатся в печени, почках, мозге, мышцах и пищеварительном тракте. Именно в этих органах в наибольшей степени нарушается обмен веществ при дисфункции щитовидной железы. Тиреоидные гормоны контролируют скорость обмена веществ, рост и развитие организма, метаболические процессы - общий белковый углеводный и жировой обмен; промежуточный жировой обмен жирных кислот, холестерина и фосфолипидов; превращение каротина в витамин А; промежуточный белковый обмен - накопление белка в тканях, особенно в связи с гормонами роста, мобилизацию тканевых белков при неадекватном по калорийности питании; обмен витаминов, кальция, каротина; водный и электролитный обмен; функционирование всех систем организма; реакцию на лекарственные вещества; сопротивляемость инфекциям.

Оказав гормональное действие, отработавшие молекулы тироксина подвергаются метаболическим превращениям. Период полураспада тироксина равен 6-7 дням, трийодтиронина - 2 - 3 дням. В ходе метаболизма молекулы гормонов подвергаются дейодированию, дезаминированию, декарбоксилированию, этерификации фенольной группы. При дейодировании йодтиронинов отщепившийся

от молекулы гормона йод частично вновь используется щитовидной железой для биосинтеза тиреоидных гормонов. Дезаминирование приводит к образованию кетокислот - трийодтиропировиноградной, трийодтироуксусной, тетрайодтиропировиноградной и тетрайодтироуксусной. При декарбоксилировании тироксина образуется тироксамин. В печени происходит образование сложных эфиров тиронинпроизводных с глюкоуроновой кислотой, в почках образуются аналогичные сернокислые эфиры, которые выводятся из организма. В норме потери йода с мочой составляют для взрослого человека 50-60 мкг, соответственно потребность организма в йоде составляет эту величину. Потребность беременных и кормящих женщин, растущего организма и при физических нагрузках в 1,5-2 раза выше.

Страницы: 1 2 3 4 5

Информация о химии

Zr — Цирконий

ЦИРКОНИЙ (лат. Zirconium), Zr, химический элемент IV группы периодической системы Менделеева, атомный номер 40, атомная масса 91,224. Свойства: серебристо-белый металл, твердый, тугоплавкий; плотность 6,50 г/см3, tпл 1855 °С. ...

Rb — Рубидий

РУБИДИЙ (лат. Rubidium), Rb, химический элемент I группы периодической системы Менделеева, атомный номер 37, атомная масса 85,4678. Относится к щелочным металлам. Свойства: серебристо-белый металл пастообразной консистенции. Плот ...

Лауэ (von Laue), Макс Теодор Феликс фон

Немецкий физик Макс Теодор Феликс фон Лауэ родился в семье гражданского служащего ведомства военных судов Юлиуса Лауэ и урожденной Минны Церренер. Дворянскую приставку «фон» фамилия обрела в 1913 г., когда отец Лауэ по ...