Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол

Рефераты по химии / Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол
Страница 8

Рис. 1.13. Схема устройства ситчатой колонны: 1 – корпус; 2 – ситчатая тарелка; 3 – переливная трубка; 4 – стакан.

Пар проходит через отверстия тарелки (см. рис. 1.14) и распределяется в жидкости в виде мелких струек; лишь на некотором расстоянии от дна тарелки образуется слой пены и брызг – основная область массообмена и теплообмена на тарелке.

Рис. 1.14. Схема работы ситчатой тарелки.

В определенном диапазоне нагрузок ситчатые тарелки обладают большим к.п.д., чем колпачковые. Однако допустимые нагрузки по жидкости и пару для ситчатых колонн относительно невелики. При слишком малой скорости пара (около 0,1 м/сек) происходит просачивание жидкости через отверстия тарелки и в связи с этим резкое падение к.п.д. тарелки.

Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточными для преодоления давления слоя жидкости на тарелке и должны препятствовать ее стекания через отверстия.

Проскок жидкости у ситчатых тарелок возрастает с увеличением диаметра тарелки и отклонением ее от строго горизонтального положения. Поэтому диаметр и число отверстий следует подбирать так, чтобы жидкость удерживалась на тарелках и не увлекалась механически паром. Обычно диаметр отверстий ситчатых тарелок принимают равным 0,8 – 3 мм.

Ситчатые колонны эффективно работают только при определенных скоростях ректификации, и регулирование режима их работы затруднительно. Кроме того, ситчатые тарелки требуют весьма тщательной горизонтальной установки, так как иначе пары будут проходить через часть поверхности сетки, не соприкасаясь с жидкостью.

Ситчатые тарелки уступают колпачковым по допустимому верхнему пределу нагрузки; при значительных нагрузках потеря напора в них больше, чем у колпачковых.

При внезапном прекращении подвода пара или значительном снижении его давления тарелки ситчатой колонны полностью опоражниваются от жидкости, и требуется заново запускать колонну для достижения заданного режима ректификации.

Очистка, промывка и ремонт ситчатых тарелок производятся относительно удобно и легко.

Чувствительность к колебаниям нагрузки, а также загрязнениям и осадкам, которые образуются при перегонке кристаллизующихся веществ и быстро забивают отверстия тарелки, ограничивают область использования ситчатых колонн; их применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки).

Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром.

2. Теоретические основы расчета тарельчатых ректификационных колонн

Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический (графический) и аналитический. Существуют некоторые допущения, мало искажающие действительный процесс, но существенно упрощающие его анализ и расчет:

1.молярные теплоты испарения компонентов при одной и той же температуре приблизительно одинаковы, поэтому каждый кмоль пара при конденсации испаряет 1 кмоль жидкости. Следовательно, количество поднимающихся паров в любом сечении колонны одинаково;

2.в дефлегматоре не происходит изменения состава пара. Состав пара, уходящего из ректификационной колонны, равен составу дистиллята;

3.при испарении жидкости в кипятильнике не происходит изменения ее состава;

4.теплоты смешения компонентов разделяемой смеси равны 0.

2.1 Материальный баланс ректификационной колонны

Согласно схеме на рис. 2.15 в колонну поступает F кмоль исходной смеси, состав которой хF в мольных долях низкокипящего компонента. Сверху из колонны удаляется G кмоль паров, образующих после конденсации флегму и дистиллят. Количество получаемого дистиллята D кмоль, его состав хD в мольных долях низкокипящего компонента. На орошение колонны возвращается флегма в количестве Ф кмоль, причем ее состав равен составу дистиллята (хф=xD в мольных долях). Снизу из колонны удаляется W кмоль остатка состава xw в мольных долях низкокипящего компонента. Тогда уравнение материального баланса колонны имеет вид:

Ф+F=G+W (2.14)

Поскольку G=D+Ф, то

F=D+W (2.15)

Соответственно по низкокипящему компоненту материальный баланс имеет вид:

FxF=DxD+WxW (2.16)

Концентрации питания, дистиллята и кубового остатка в мольных долях рассчитываются по формулам:

Питание:

, где (2.17)

– мольные массы бензола и толуола.

Дистиллят:

(2.18)

Кубовый остаток:

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Информация о химии

Франкленд (Frankland), Эдуард

Английский химик-органик Эдуард Франкленд родился в Чёрчтауне, Ланкашир. Образование получил в Музее практической геологии в Лондоне (до 1845 г.), затем в Марбургском и Гисенском университетах (в Марбурге его профессором химии был ...

Металлоорганическая химия

Металлоорганическая химия — раздел химии, возникший на стыке органической химии и неорганической химии. Предметом изучения металлоорганической химии являются органические производные металлов, содержащие связь углерод-металл ...

Na — Натрий

НАТРИЙ (лат. Natrium), Na, химический элемент I группы периодической системы Менделеева, атомный номер 11, атомная масса 22,98977; относится к щелочным металлам. Свойства: серебристо-белый металл, мягкий, легкий (плотность 0,968 ...