Исследование электрохимического механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях

Рефераты по химии / Исследование электрохимического механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях
Страница 4

На рис. 1 представлены результаты исследования кинетики проницаемости плацент по аниону левомицетнна. При т > 10-15 мин экспериментальные точки укладывались на прямые в теоретических координатах In C/(CD - С\) -т~ и вес малоамплитудные полевые воздействия ускоряют левомицетин о вый перенос. Плаценты обладают значительной индивидуальностью (рис. 1а, кр. 1-3), «выпрямляющими» свойствами по отношению к постоянному электроциклу с увеличением эффективного заряда до z = -1,2. Химическая стабилизация Р-лактамного цикла в полусинтетическом оксациллине дает z = -1 и нормальную корреляцию скорости плацентарного переноса с размером аниона. Такая же корреляция: левомицетин > бензилпенициллин > оксациллин наблюдалась и в экспериментах с ультразвуком, где преобладали механическая стимуляция диффузии и размерный фактор.

Обработка экспериментальных данных показала, что перенос анионов антибиотиков идет по липидным «кинковым» каналам проводимости с D = 2,6-1(Г8 — 2,6»7 см2/с, AD = 7,9 - 13,4 кДж/моль, Ку = 1,2-13,5 при удельной электропроводности плацент 2,04-10-7 См/см и ускоряющем сдвиге потен­циалов асимметрии Дсра порядка нескольких единиц и десятков милливольт.

На основании полученных результатов было рассмотрено синергетическое ускорение антибиотикового переноса в смешанных малоамплитудных физических полях. Соответствующие теоретические уравнения модели «рыхлого квазикристалла» имеют вид:

для синергетических коэффициентов ускорения. Здесь Сх - среднее значе­ние модулированных переменными физическими полями ионных выходных концентраций, знак «+» отвечает переносу катионов, а «-», соответствует переносу анионов, величины Куп и Дфа„ приведены в табл, N - общее число действующих смешанных полей.

Для плацентарного переноса анионов антибиотиков расчет дал зависимости Ку - N (рис. 3), которые могут быть аппроксимированы простым экспоненциальным законом в виде. Численный коэффициент а имеет значения: а = 0,408 - для оксациллина, а = 0,683 - для левомицетина, а = 0,730 - для бензилпенициллина. Среднее значение коэффициента по выборке из трех антибиотиков а = 0,5. В четвертой главе (электрохимические аспекты оптимизации аппаратов антибиотиковой физиотерапии) произведен учет системных реакций организма на суммарной биопараметричности физических полей Е и энергетической сенситивности тканей организма S (первый раздел), а также решена задача многопараметрической оптимизации эффективности лечения с помощью аппаратов антибиотиковой физиотерапии на смешанных полевых эффектах и найдена корреляция комплексного индекса оптимизации - КИО с относительным терапевтическим эффектом - ОТЭ (второй раздел).

Анализ литературных данных показал, что в качестве физиологически значимых воздействий физических полей, вызывающих системные реакции организма, можно выделить «диффузионное», «электрическое», «тепловое», «силовое», «сепарирующее», «санирующее» и «информационное». Присваивая каждому воздействию статистический вес, равный единице, можно заключить, что наименьший суммарный индекс биопараметричности имеют СВЧ -поля (рассматриваемые с точки зрения чисто теплового эффекта в биологических тканях) при Е = 3, а наибольший - ультразвуковые поля при I = 5. Электрические, магнитные поля и лазерное облучение имеют S = 4. Для смешанных воздействий N физических полей можно принять линейную ап­проксимацию численное решение, которого дает Nmax = 2,4. При этом важно то, что положение Nmax не зависит от р, т.е. от выбора числа факторов влияния физических полей, которое из-за сложности системных реакций организма и его индиви дуальной переносимости антибиотиковых физиотерапевтических процедур следует считать достаточно произвольным.

При а = 0,5 и |3 = 4 получается зависимость КИО - N, показанная на рис. 4а. Из этих данных следует, что оптимум сочетаний антибиотиковой физиотерапии отвечает плато КО = 0,7 при Nmax = 2 - 4. Именно такой подход к конструированию аппаратов, основанный на использовании как минимум бинарных сочетаний полевых воздействий, и представляет собой наиболее перспективную линию развития современного клинического физиотерапевтического приборостроения. Например, это хорошо прослеживается на аппаратах, выпускаемых ООО «ТРИМА» в г. Саратове для лечения урологических, стоматологических и офтальмологических заболеваний с помощью магнитных, электрических, температурных полей, световых и лазерных излучений, а также их сочетанных комбинаций (приборы типа «Атос», «Ин-трамаг», «Интратерм», «Амблио» и т.п., разработанные под руководством к.т.н. Райгородского Ю.М.).

Страницы: 1 2 3 4 5 6

Информация о химии

Лауэ (von Laue), Макс Теодор Феликс фон

Немецкий физик Макс Теодор Феликс фон Лауэ родился в семье гражданского служащего ведомства военных судов Юлиуса Лауэ и урожденной Минны Церренер. Дворянскую приставку «фон» фамилия обрела в 1913 г., когда отец Лауэ по ...

Виланд (Wieland), Генрих Отто

Немецкий химик Генрих Отто Виланд родился в Пфорцхайме, в семье фармацевта Теодора Виланда и Элизы (Блом) Виланд. Получив начальное и среднее образование в местных школах, он изучал химию в университетах Мюнхена, Берлина и Штутгар ...

Pr — Празеодим

ПРАЗЕОДИМ (лат. Praseodymium), Pr, химический элемент III группы периодической системы Менделеева, атомный номер 59, атомная масса 140,9077. Относится к лантаноидам. Свойства: металл, плотность 6,475 г/см3, tпл 932 °С. Приме ...