Исследования в области синтеза и переработки полиэтилентерефталата и нанокомпозитов на его основе

Рефераты по химии / Исследования в области синтеза и переработки полиэтилентерефталата и нанокомпозитов на его основе
Страница 3

Рис. 2. Схема органомодификации монтмориллонита

Кроме того, в целях внедрения и хорошего распределения пластин слоистого силиката в полимере была разработана методика закрепления катализатора на поверхности слоистого силиката. Таким образом, формирование макромолекул происходило непосредственно на поверхности нанонаполнителя. Схема процесса полимеризации мономера на поверхности силиката приведена на рис. 3 (а, б).

Рис. 3. Схема образования нанокомпозита

Были проведены исследования механических характеристик изготовленных образцов материала, таких как ударная вязкость, предельная прочность, относительное удлинение при разрыве, модуль упругости и др. Исследован целый комплекс эксплуатационных характеристик материалов на основе ПЭТ, в т.ч. барьерные свойства (проницаемость по кислороду), электрофизические (электрическая прочность, пробивное напряжение, удельное объемное электрическое сопротивление), реологические свойства и т.д.

Наряду с электрическими и механическими испытаниями проведены испытания на теплостойкость полученного материала, которые подтвердили способность диэлектрика выдерживать воздействие повышенной температуры без недопустимого ухудшения его свойств.

Исследование морфологии и структурной организации модифицированного ПЭТ, степени и особенностей распределения наноразмерных наполнителей в полимерной матрице позволило выявить основные закономерности и установить взаимосвязь объемов введенного наполнителя на различные характеристики материала.

Исследования в области катализа процесса синтеза ПЭТ и нанокомпозитов на его основе с использованием нового комплексного катализатора, а также катализатора, являющегося одновременно органическим модификатором в межслоевом пространстве монтмориллонита, позволили значительно сократить время процесса синтеза и достичь наилучшей степени эксфолиации частиц алюмосиликата в объеме полимерной матрицы, что в свою очередь обеспечило наилучшее использование потенциала нанокомпозитных материалов по совокупности эксплуатационных характеристик при минимальных степенях наполнения полимерной матрицы полиэтилентерефталата.

4. Закономерности твердофазной поликонденсации ПЭТ

С целью получения высокомолекулярного продукта на основе ПЭТ с улучшенными физико-химическими, диэлектрическими свойствами, гидролитической стойкостью и незначительным содержанием концевых карбоксильных групп, синтезы осуществляли способом твердофазной поликонденсации (ТФПК).

Предварительно полученный и высушенный ПЭТ подвергали термической обработке в атмосфере инертного газа или вакууме.

Удлинение цепи происходит за счет реакций функциональных групп макромолекул. Благодаря увеличению молекулярной массы, полимер имеет улучшенные физико-химические и диэлектрические свойства, обладает гидролитической стойкостью и незначительным содержанием карбоксильных групп. Рост молекулярной массы может происходить:

- взаимодействием карбоксильной и гидроксильной групп двух макромолекул с образованием сложноэфирной связи и выделением этиленгликоля.

- взаимодействием гидроксильных групп макромолекул с образованием простой эфирной связи и выделением воды.

Подбирая оптимальные условия для максимального роста степени полимеризации, а следовательно, и для улучшения свойств полиэтиленте-рефталатов проводились синтезы в твердой фазе образцов полимеров. Полученные результаты и условия проведения твердофазной поликонденсации отражены в табл. 3. Из данных, представленных в табл. 3 можно заключить, что оптимальными условиями для ТФПК образцов ПЭТ, являются 240 °С в течение 8 часов.

Полученные результаты свидетельствуют о существенном влиянии на итоги твердофазной поликонденсации химического состава каталитической системы. Как следует из данных таблицы максимальный эффект повышения молекулярной массы ПЭТ достигается при использовании в качестве катализатора ацетата натрия (0,075-0,125 %).

Страницы: 1 2 3 4 5 6

Информация о химии

Валлах (Wallach), Отто

Немецкий химик Отто Валлах родился в Кенигсберге (ныне Калининград), в семье прусского служащего Герхарда Валлаха и Отилии (Тома) Валлах. Вскоре после рождения мальчика его отец был переведен в Штеттин, а затем, в 1855 г., – ...

Агрикола (Agricola), Георг

24 марта 1490 г. – 21 ноября 1555 г. Георг АгриколаНемецкий учёный в области горного дела и металлургии Георг Агрикола [настоящая фамилия Бауэр (Bauer); лат. agricola – земледелец, перевод немецкого слова Bauer] родил ...

Ричардс (Richards), Теодор Уильям

Американский химик Теодор Уильям Ричардс родился в Джермантауне (штат Пенсильвания), в семье квакеров. Он был четвертым по счету из шести детей в семье преуспевающего художника-мариниста Уильяма Торста Ричардса и поэтессы Анны (Мэ ...