Исследования химии в 20-21 веках

Рефераты по химии / Исследования химии в 20-21 веках
Страница 4

3. новые ХИМИЧЕСКИе ЭЛЕМЕНТы

3.1 Получение новых химических элементов

Вещественная среда обитания людей содержит многочисленные соединения и их составляющие - химические элементы. Еще до 30-х годов XX века Периодическая система Менделеева состояла из 88 элементов. С учетом свободных клеток с номерами 43 (технеций), 61 (прометий), 85 (астат) и 87 (франций) в ней было всего 92 места. Последним элементом с атомным номером 92 был уран.

Предполагается, что на первой стадии развития Земли существовали и трансурановые элементы с порядковыми номерами до 106. Однако из-за небольшой продолжительности жизни по сравнению с возрастом Земли они полностью распались. Самым долгоживущим элементом из них оказался плутоний-244 с периодом полураспада 82,2 млн. лет, и его существование в настоящее время доказано: он обнаружен в 1971г. в калифорнийском минерале бастнезите.

В 1940г. получен первый трансурановый элемент - нептуний, а за три года до этого получен первый искусственный элемент - технеций. Затем в лабораторных условиях зарегистрированы трансурановые элементы с атомными номерами до 109. В Объединенном институте ядерных исследований в Дубне открыты элементы с номерами 104(1964), 105(1970), 106(1974) и 107(1976).

Международный союз чистой и прикладной химии в сентябре 1997г. узаконил названия искусственных сверхтяжелых элементов: резерфордий (104), дубний (105), сиборгий (106), борий (107), хассий (108) и мейтнерий (109). Эти названия даны главным образом в честь ученых, внесших значительный вклад в ядерную физику. Один из них - дубний - назван в честь города Дубна, где были открыты многие новые химические элементы. В феврале 1999г. появилось сообщение: ученые из Объединенного института ядерных исследований в Дубне открыли выходящий за пределы Периодической системы Менделеева новый химический элемент с периодом полураспада намного большим, чем у открытых в последнее время сверхтяжелых элементов.

Трансурановые элементы с атомными номерами до 100 можно получить в ядерном реакторе путем «надстройки» ядер изотопа урана-238 при сталкивании их с нейтронами. Все элементы с номерами выше 100 и массовыми числами более 257 получают только в ускорителях и в незначительных количествах. Для получения сверхтяжелых трансуранидов ядра урана бомбардируются ионами ксенона, гадолиния, самария, урана и др., которые обладают достаточно высокой энергией. Особенно эффективна бомбардировка ионами самого урана, в результате которой образуются тяжелые промежуточные ядра.

В стабильных атомных ядрах заряженные и нейтральные частицы находятся в равновесном состоянии. С нарушением равновесия ядерная система становится неустойчивой. Современная теория позволяет рассчитать условия стабильности сверхтяжелых ионов и элементов, а также предсказать наиболее вероятные их физические и химические свойства. Из подобных расчетов следует, что элементы с атомными номерами, близкими к 114 и 164, должны обладать неожиданно высокой стабильностью. Такие элементы образуют своеобразные острова стабильности, где возможно существование изотопов с периодом полураспада до 10 лет.

Предполагается, что свойства элементов с атомными номерами 112-118 аналогичны свойствам элементов в ряду ртуть - радон. Верхняя граница возможной стабильности, насколько ее позволяет определить современный уровень естественно - научных знаний, приближается к атомному номеру 174. Для синтеза подобного рода элементов нужны новые технические средства эксперимента.

3.2 Радиоактивные изотопы и их применение

Изотопы - разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов, и поэтому занимают одно и то же место в Периодической системе элементов Менделеева. Различают устойчивые (стабильные) и радиоактивные изотопы. Термин «изотопы» впервые предложил в 1910г. Фредерик Содди (1877-1956), известный английский радиохимик, лауреат Нобелевской премии 1921г., экспериментально доказавший образование радия из урана.

Страницы: 1 2 3 4 5 6 7 8 9

Информация о химии

Форма микролинз контролируется уровнем pH

Исследователи из Китая использовали обычный белок для создания оптических линз, диаметр которых составляет десятые доли микрометра. Фокусировка таких линз может изменяться просто за счет изменения значения pH окружающей среды. Ис ...

Штаудингер (Staudinger), Герман

Немецкий химик Герман Штаудингер родился в Вормсе, в семье профессора философии Франца Штаудингера и Августы (Венк) Штаудингер. Штаудингер решил стать ботаником, но отец посоветовал ему прежде изучить химию, считая, что знание это ...

Бухнер (Buchner), Эдуард

Немецкий химик Эдуард Бухнер родился в Мюнхене, в семье профессора судебной медицины и гинекологии Мюнхенского университета Эрнста Бухнера и Фредерики (Мартин) Бухнер, дочери служащего Королевского казначейства. После смерти отца ...