Исследования химии в 20-21 веках

Рефераты по химии / Исследования химии в 20-21 веках
Страница 14

Металлизированные волокна и бумага обладают уникальными механическими, теплофизическими и электропроводными свойствами. В будущем они найдут широкое применение.

6.5 Тонкопленочные материалы для накопителей информации

Любая современная вычислительная машина, в том числе и персональный компьютер, содержит накопитель информации - запоминающее устройство, способное накапливать и хранить большой объем информации. Большинство накопителей информации базируется на магнитной записи в накопителях информации на подвижном магнитном носителе, где основное - это накопление информации, важным параметром является поверхностная информационная плотность записи, определяемая количеством информации, приходящейся на единицу площади поверхности рабочего слоя носителя информации.

Изготовление современных магнитных накопителей большой емкости основано на применении тонкопленочных материалов. Благодаря применению новых магнитных материалов и в результате совершенствования технологии изготовления всех тонкопленочных элементов магнитного накопителя за относительно короткий срок поверхностная плотность записи информации увеличилась в пять раз: в 1998 г. она составляла примерно 12 Гбит/дюйм2, а в 2000 г. - около 100 Гбит/дюйм2.

Запись с высокой поверхностной плотностью осуществляется на носитель, рабочий слой которого формируется из тонкопленочного кобальтсодержащего материала. Высокую плотность записи можно реализовать только с помощью преобразователей, тонкопленочный материал магнитопровода которых характеризуется большой магнитной индукцией насыщения и высокой магнитной проницаемостью.

Для воспроизведения записанной с высокой плотностью информации применяется высокочувствительный тонкопленочный элемент, электрическое сопротивление которого изменяется в магнитном поле. Такой элемент называется магниторезистивным. Он напыляется из высокопроницаемого магнитного материала, например пермаллоя. Относительное изменение электрического сопротивления пермаллоевого элемента в магнитном поле составляет около 2%. Эта величина экспериментальных исследований последнего десятилетия, может достигать (например, в многослойных тонкопленочных материалах, однослойных гранулированных пленках и других материалах) десятков процентов, поэтому их называют материалами со сверхгигантским магнетосопротивлением.

Таким образом, с применением тонкопленочных магнитных материалов при изготовлении накопителей информации большой емкости уже реализована довольно высокая плотность записи информации. При модернизации таких накопителей и внедрении новых материалов следует ожидать дальнейшего увеличения информационной плотности, что весьма важно для развития современных технических средств записи, накопления и хранения информации.

7. Важнейшие открытия в химии XXI века

2001 Уильям Ноулз, Риоджи Нойори и Барри Шарплесс «За исследования, используемые в фармацевтической промышленности - создание хиральных катализаторов окислительно-восстановительных реакций».

2002 Джон Фенн и Койчи Танака «За разработку методов индентификации и структурного анализа биологических макромолекул, и, в частности, за разработку методов масс-спектрометрического анализа биологических макромолекул».

Курт Вютрих «За разработку применения ЯМР - спектроскопии для определения трехмерной структуры биологических макромолекул в растворе».[7]

Шведская Королевская академия наук объявила лауреатов Нобелевской премии-2003 по химии. Ими оказались 54-летний Питер Эгр (Peter Agre) из Медицинской школы Университета Джона Хопкинса и 47-летний Родерик МакКиннон из Медицинского института Говарда Хьюза. 10 миллионов шведских крон они получат "за открытие каналов в клеточных мембранах".

Ученые долго пытались понять, каким образом вода и соли (ионы) попадают внутрь живой клетки и выводятся из нее. Понять эти процессы на молекулярном уровне было принципиально важно для медицины; это открыло бы путь к лечению болезней почек, сердца, мускулов, нервов.

Страницы: 9 10 11 12 13 14 15 16 17

Информация о химии

Структурная химия

В 1857 Кекуле, исходя из теории валентности (под валентностью понималось число атомов водорода, вступающих в соединение с одним атомом данного элемента), предположил, что углерод четырехвалентен и потому может соединяться с четырь ...

Zn — Цинк

ЦИНК (лат. Zincum), Zn, химический элемент II группы периодической системы Менделеева, атомный номер 30, атомная масса 65,39. Свойства: серебристо-белый металл; плотность 7,133 г/см3, tпл 419,5 °С. На воздухе покрывается защи ...

Hf — Гафний

ГАФНИЙ (лат. Hafnium), Hf, химический элемент IV группы периодической системы, атомный номер 72, атомная масса 178,49. Свойства: серебристо-белый тугоплавкий металл; плотность 13,35 г/см3, tпл 2230 °С. Название: назван от по ...