Исторический обзор основных этапов развития химии

Рефераты по химии / Исторический обзор основных этапов развития химии
Страница 5

В конце 20-х – начале 30-х годов XX века на основе квантовой теории формируются принципиально новые представления о строении атома и природе химической связи.[15]

После создания Альбертом Эйнштейном фотонной теории света (1905) и выведения им статистических законов электронных переходов в атоме (1917) в физике обостряется проблема волна-частица.

Если в XVIII-XIX веках имелись расхождения между различными учеными, которые для объяснения одних и тех же явлений в оптике привлекали либо волновую, либо корпускулярную теорию, то теперь противоречие приобрело принципиальный характер: одни явления интерпретировались с волновых позиций, а другие – с корпускулярных. Разрешение этого противоречия предложил в 1924 г. французский физик Луи Виктор Пьер Раймон де Бройль, приписавший волновые свойства частице.

Исходя из идеи де Бройля о волнах материи, немецкий физик Эрвин Шрёдингер в 1926 г. вывел основное уравнение т.н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой системы и их изменение во времени. Шредингер дал общее правило преобразования классических уравнений в волновые. В рамках волновой механики атом можно было представить в виде ядра, окруженного стационарной волной материи. Волновая функция определяла плотность вероятности нахождения электрона в данной точке.

В том же 1926 г. другой немецкий физик Вернер Гейзенберг разрабатывает свой вариант квантовой теории атома в виде матричной механики, отталкиваясь при этом от сформулированного Бором принципа соответствия.

Согласно принципу соответствия, законы квантовой физики должны переходить в классические законы, когда квантовая дискретность стремится к нулю при увеличении квантового числа. В более общем виде принцип соответствия можно сформулировать следующим образом: новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Квантовая механика Гейзенберга позволяла объяснить существование стационарных квантованных энергетических состояний и рассчитать энергетические уровни различных систем.

Фридрих Хунд, Роберт Сандерсон Малликен и Джон Эдвард Леннард-Джонс в 1929 г. создают основы метода молекулярных орбиталей. В основу ММО заложено представление о полной потере индивидуальности атомов, соединившихся в молекулу. Молекула, таким образом, состоит не из атомов, а представляет собой новую систему, образованную несколькими атомными ядрами и движущимися в их поле электронами. Хундом создаётся также современная классификация химических связей; в 1931 г. он приходит к выводу о существовании двух основных типов химических связей – простой, или σ-связи, и π-связи. Эрих Хюккель распространяет метод МО на органические соединения, сформулировав в 1931 г. правило ароматической стабильности (4n+2), устанавливающее принадлежность вещества к ароматическому ряду.[16]

Таким образом, в квантовой химии сразу выделяются два различных подхода к пониманию химической связи: метод молекулярных орбиталей и метод валентных связей.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами. Кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности.

Вероятно, наиболее важным этапом в развитии современной химии было создание различных исследовательских центров, занимавшихся, помимо фундаментальных, также прикладными исследованиями.

В начале 20 в. ряд промышленных корпораций создали первые промышленные исследовательские лаборатории. В США была основана химическая лаборатория «Дюпон», лаборатория фирмы «Белл». После открытия и синтеза в 1940-х годах пенициллина, а затем и других антибиотиков появились крупные фармацевтические фирмы, в которых работали профессиональные химики. Большое прикладное значение имели работы в области химии высокомолекулярных соединений.

Одним из ее основоположников был немецкий химик Герман Штаудингер, разработавший теорию строения полимеров. Интенсивные поиски способов получения линейных полимеров привели в 1953 к синтезу полиэтилена, а затем других полимеров с заданными свойствами. Сегодня производство полимеров – крупнейшая отрасль химической промышленности.

Не все достижения химии оказались благом для человека. При производстве красок, мыла, текстиля использовали соляную кислоту и серу, представлявшие большую опасность для окружающей среды. В 21 в. производство многих органических и неорганических материалов увеличится за счет вторичной переработки использованных веществ, а также за счет переработки химических отходов, которые представляют опасность для здоровья человека и окружающей среды.

Заключение

К середине 30-х годов XX века химическая теория приобретает вполне современный вид. Хотя основные концепции химии в дальнейшем стремительно развивались, принципиальных изменений в теории больше не происходило.

Страницы: 1 2 3 4 5 6

Информация о химии

Квантово-химические правила отбора элементарных стадий

Любая термодинамически разрешенная реакция, в которой происходит незначительное перемещение ядер (близость минимумов энергетических термов) и мало изменяются электронные состояния (принцип наименьшего движения), и молек ...

Томсон (Thomson), Джозеф Джон

Английский физик Джозеф Джон Томсон родился в Читхэм-Хилл, пригороде Манчестера, в семье Джозефа Джеймса и Эммы (в девичестве Суинделлс) Томсон. Поскольку отец, книготорговец, хотел, чтобы мальчик стал инженером, его в возрасте че ...

Химический элемент хром

Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хрома имеет яркую окраску, причем ...