Исторический очерк биохимии

Рефераты по химии / Исторический очерк биохимии
Страница 6

Обмен веществ складывается из двух взаимосвязанных, одновременно протекающих в организме процессов – ассимиляция и диссимиляция, или анаболизм и катаболизм. В ходе катаболических превращений происходит расщепление крупных органических молекул до простых соединений с одновременным выделением энергии, которая запасается в форме богатых энергией фосфатных связей, главным образом в молекуле АТФ и других богатых энергией соединений. Катаболические превращения обычно осуществляются в результате гидролитических и окислительных реакций и протекает как в отсутствии кислорода (анаэробный путь – гликолиз, брожение), так и при его участии (аэробный путь – дыхание). Второй путь эволюционно более молодой и в энергетическом отношении более выгодный. Он обеспечивает полное расщепление органических молекул до СО2 и Н2О. Разнообразные органические соединения в ходе катаболических процессов превращаются в органическое число небольших молекул (помимо СО2 и Н2О): углеводы – в трифосфаты и (или) пируват, жиры – в ацетил – КоА, пропионил – КоА, оксалоацетат, α – кетоглютарат, фумарат, сукцинат и конечные продукты азотистого обмена – мочевину, аммиак, мочевую кислоту и другие.

В ходе анаболических превращений происходит биосинтез сложных молекул из простых молекул – предшественников. Автотрофные организмы (зелёные растения и некоторые бактерии) могут осуществлять первичный синтез органических соединений из СО2 с использованием энергии солнечного света (фотосинтез) или энергии окисления неорганических веществ. Гетеротрофы синтезируют органические соединения только за счёт энергии и продуктов, образующихся в результате катаболических превращений. Исходным сырьём для процессов биосинтеза в этом случае служит небольшое число соединений, в том числе ацетил – КоА, сукцинил КоА, рибоза, пировиноградная кислота, глицерин, глицин, аспарагиновая, глутаминовая и другие аминокислоты. Каждая клетка синтезирует характерные для неё белки, жиры, углеводы и другие соединения. Например, глюкоген мышц синтезируется в мышечных клетках, а не доставляется кровью из печени. Как правило, синтез включает восстановительные этапы и сопровождается потреблением энергии.

Функции липидов.

Липиды (от греческого “липос” – жир) – низкомолекулярные органические соединения полностью или почти полностью нерастворимые в воде, могут быть извлечены из клеток животных, растений, и микроорганизмов неполярными органическими растворителями, такими как хлороформ, эфир, бензол.

Гидрофобность (или липофильность) является отличительным свойством этого класса соединения, хотя по природе химическому строению и структуре – они весьма разнообразны. В их состав входят спирты, жирные кислоты, азотистые соединения, фосфорная кислота, углеводы и другие. Следовательно, учитывая различия в химическом строении, функциях соединений, относящихся к липидам, дать единое определение для представителей этого класса веществ невозможно.

Роль липидов в процессе жизнедеятельности организма велика и разнообразна. К основным функциям липидов относятся структурная, энергетическая, резервная, защитная, регуляторная.

Структурная функция.

В комплексе с белками липиды являются структурными компонентами всех биологических мембран клеток, а следовательно, влияют на их проницаемость, участвуют в передаче нервного импульса, в создании межклеточного взаимодействия и других функциях биомембран.

Энергетическая функция.

Липиды являются наиболее энергоёмким “клеточным топливом”. При окислении 1г. жира выделяется 39 КДж энергии, что в два раза больше, чем при окислении 1г. углеводов.

Резервная функция.

Липиды являются наиболее компактной формой депонирования энергии в клетке. Они резервируются в адипоцитах – клетках жировой ткани. Содержание жира в организме взрослого человека составляет 6 – 10 кг.

Защитная функция.

Обладая выраженными термоизоляционными свойствами, липиды предохраняют организм от термических воздействий; жировая прокладка защищает тело и органы животных от механических и физических повреждений; защитные оболочки в растениях (восковой налёт на листьях и плодах) защищает от инфекции и излишней потери или накопления воды.

Страницы: 1 2 3 4 5 6 7

Информация о химии

Вудворд (Woodward), Роберт Бернс

Американский биохимик Роберт Бернс Вудворд родился в Бостоне (штат Массачусетс), в семье Маргарет (Бернс) Вудворд и Артура Честера Вудворда. Его отец умер через год после рождения сына. Будучи ребенком, Вудворд проводил много врем ...

Гротгус (von Grotthgus), Теодор фон

Прибалтийский физик и химик Кристиан Иоганн Дитрих фон Гротгус (с 1805 известен как Теодор Гротгус) родился в Лейпциге в весьма знатной семье баронов Гротгусов из Митавы, столицы Курляндского герцогства. Учился в Лейпцигском униве ...

Cu — Медь

МЕДЬ (лат. Cuprum), Cu (читается «купрум»), химический элемент I группы периодической системы Менделеева, атомный номер 29, атомная масса 63,546. Природная медь состоит из двух стабильных нуклидов 63Cu (69,09% по масс ...