Методы получения дисперсных систем
Рефераты по химии / Методы получения дисперсных системСтраница 4
2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.
Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).
Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.
Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.
В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.
Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.
Например, свежеприготовленный и быстро промытый осадок гидроксида железа переходит в коллоидный раствор красно-бурого цвета от добавления небольшого количества раствора FeCl3 (адсорбционная пептизация) или HCl (диссолюция).
Механизм образования коллоидных частиц по методу пептизации изучен довольно полно: происходит химическое взаимодействие частиц на поверхности по схеме:
Далее агрегат
адсорбирует ионы Fe+3 или FeO+, последующие образуются в результате гидролиза FeCl3 и ядро мицеллы получает положительный заряд. Формулу мицеллы можно записать в виде:
или
С точки зрения термодинамики, наиболее выгодным является метод диспергирования.
69. Рассчитать величину среднеквадратичного смещения частицы гидрозоля с радиусом частиц 10-6 м за 5 с при температуре 283 К и вязкости дисперсионной среды 1,7·10-7 Па ·с.
Решение.
1) Коэффициент диффузии для сферической частицы рассчитывается по уравнению Эйнштейна:
,
где NА – число Авогадро, 6 10 23 молекул/моль;
h – вязкость дисперсионной среды, Н · с/м2 (Па · с);
r – радиус частицы, м;
R – универсальная газовая постоянная, 8,314 Дж/моль · К;
T – абсолютная температура, К;
число 3,14.
2) Среднее квадратичное смещение:
·D·
где
среднее квадратичное смещение (усредненная величина сдвига) дисперсной частицы, м2;
время, за которое происходит смещение частицы (продолжительность диффузии), с;
D коэффициент диффузии, м2 . с-1.
·D·=2*12,24*10-10*5=12,24*10-9 м2
Ответ:
12,24*10-9 м2.
74. Поверхностно-активные вещества. Описать причины и механизм проявления их поверхностной активности.
Информация о химии
Хершбах (Herschbach), Дадли Роберт
Американский химик Дадли Роберт Хершбах родился в г. Сан-Хосе (штат Калифорния) и был старшим из шести детей Роберта Дадли Хершбаха, подрядчика-строителя, и Дороти Эдит (в девичестве Биир) Хершбах. Живя в Калифорнии в сельской мес ...
Пастер (Pasteur), Луи
Французский микробиолог и химик Луи Пастер родился в Доле (Юра, Франция). В 1847 г. он окончил Высшую нормальную школу в Париже, в 1848 г. защитил докторскую диссертацию. Преподавал естественные науки в Дижоне (1847–1848), б ...
Герцберг (Herzberg), Герхард
Германо-канадский физик Герхард Герцберг родился в Гамбурге, в семье Эллы (в девичестве Бибер) и Альбина Герцберг. Его ранние школьные годы прошли в Гамбурге; степень бакалавра (1927) и доктора (1928) он получил в Дармштадтском те ...
