Механизм формирования фазовой структуры эпоксидно-каучуковых систем

Рефераты по химии / Механизм формирования фазовой структуры эпоксидно-каучуковых систем
Страница 4

Результаты термодинамического и кинетического анализа фазовых превращений, сопровождающих отверждение эпоксидного олигомера, позволяют предположить следующий механизм формирования фазовой структуры эпоксидно-каучуковой системы. Процесс фазового разделения системы включает в себя зарождение новой фазы (нуклеацию) и ее последующий рост. Скорость образования зародышей новой фазы связана со степенью пересыщения раствора олигомерного каучука в отверждающемся эпоксидном олигомере, которая представляет собой отношение фактической концентрации олигомерного каучука к концентрации, соответствующей его равновесной растворимости в эпоксидном олигомере данной степени химического превращения. Скорость роста зародышей (ωP) определяется потоком вещества, равным произведению коэффициента взаимодиффузии и градиента концентрации dc/dx. Градиент концентрации возникает из-за несовпадения фактического состава раствора олигомерного каучука в отверждающемся эпоксидном олигомере со значением равновесной растворимости каучука и в силу этого также связан со степенью пересыщения отверждающейся системы. Степень пересыщения системы изменяется симбатно скорости химической реакции эпоксидного олигомера. На рис. 3 приведены экспериментально полученные кривые изменения скорости химического превращения и Dv компонентов эпоксидно-каучуковой системы в зависимости от степени превращения эпоксидного олигомера. Поскольку dc/dx и Dv изменяются антибатно, скорость роста зародышей как функция степени отверждения эпоксидно-каучуковой системы имеет экстремальный характер.

Физическая картина процесса такова: если первичная нуклеация происходит в области конверсии эпоксидного олигомера, в которой суммарная скорость процесса фазового разделения лимитируется dc/dx, нарастание пересыщения раствора в ходе реакции эпоксидного олигомера компенсируется диффузионным потоком на растущий центр и образование новых цен тров роста подавляется до пренебрежимо малого значения. Особенность этого этапа процесса — возможность укрупнения растущих частиц за счет «диффузионного поедания» более мелких. Компенсация пересыщения нарушается в диффузионно-контролируемой области протекания процесса фазового разделения. По мере падения Dv радиус зоны диффузионного стока на растущий центр уменьшается. Следствие этого — возникновение и развитие на периферии этой зоны областей локального пересыщения, в которых дальнейшее химическое превращение вызывает образование новых центров роста — вторичную нуклеацию (новообразование), препятствующее росту первоначально выделившихся частиц.

Таким образом, механизм формирования фазовой структуры отверждающейся эпоксидно-каучуковой системы определяется конкуренцией двух кинетических факторов: скорости химической реакции и взаимной диффузии компонентов системы. Новообразование является результатом изменения соотношений между ними и должно приводить в общем случае к полимодальному распределению частиц дисперсной фазы по размерам. Число максимумов на кривых распределения частиц дисперсной фазы по размерам зависит прежде всего от растворимости каучука в эпоксидном олигомере. Если компоненты эпоксидно-каучуковой системы плохо совместимы уже на стадии их смешения, то процесс фазового разделения начинается практически одновременно с химическим превращением эпоксидного олигомера. А поскольку скорость процесса в начале отверждения системы определяется величиной dc/dx, то рост первоначально выделившихся частиц будет продолжаться в течение наиболее длительного промежутка времени до тех пор, пока процесс разделения не перейдет в диффузионно-контролируемую область. В дальнейшем с ростом а частота последовательных новообразований может возрастать. Чем больше термодинамическое сродство между компонентами, тем позже произойдет первичная нуклеация. В предельном случае при высокой исходной совместимости эпоксидного олигомера и олигомерного каучука может быть достигнуто унимодальное распределение частиц каучуковой фазы по размерам. Кроме того, число максимумов на кривых распределения частиц дисперсной фазы каучука зависит от связи растворимости олигомерного каучука с изменением ММ и химической природы эпоксидного олигомера в ходе реакции отверждения. Если «чувствительность» олигомерного каучука к росту молекулярной массы и изменению полярности за счет увеличения числа гидроксильных групп в составе молекулы эпоксидного олигомера велика, то при разных диффузионных возможностях частота нуклеаций будет более высокой из-за увеличения степени пересыщения эпоксидно-каучуковых систем. При этом число пиков на кривой распределения частиц дисперсной каучуковой фазы увеличится, частота последовательных новообразований возрастет. В нашем случае реализуется «двухстадийный» механизм формирования фазовой структуры.

Страницы: 1 2 3 4 5

Информация о химии

Браунер (Brauner), Богуслав

Чехословацкий химик Богуслав Браунер родился в Праге (тогда Австро-Венгрия). Изучал химию в Пражской технической школе у Ф.Столбы. С 1882 г. Браунер читал лекции по химии в Пражском университете; в 1897 г. стал профессором химии. ...

Нобелевка по химии присуждена за открытие квазикристаллов

Шведская королевская академия наук решила присудить Нобелевскую премию по химии Дэниелу Шехтману (Dan Shechtman), профессору Израильского технологического института (Technion). Химик удостоен награды за открытие квазикристаллов ( ...

Выводы

  1.     Проведён анализ психолого-педагогической, методической и химической литературы для определения современного состояния проблемы применения эксперимента в системе проблемного обучения. 2.&nb ...