Микрогетерогенные системы

Рефераты по химии / Микрогетерогенные системы
Страница 17

Линейная скорость ожижающего агента, при которой порошок переходит в псевдоожиженное состояние, называется скоростью начала псевдоожижения или его первой критической скоростью WK. Для мелких частиц (d < 1 мм) WK ~ d2, для крупных (d ≥ 1 мм) WK ~ √d. WK уменьшается с увеличением плотности восходящего потока.

При дальнейшем возрастании W слой разрушается и начинается интенсивный вынос порошка из аппарата. Отвечающая данному состоянию слоя скорость потока называется скоростью уноса (свободного витания) частиц или второй критической скоростью псевдоожижения Wун, превышающей WK в десятки раз. Если скорость ожижающего агента больше скорости витания самых крупных частиц, слой полностью увлекается потоком. Если после достижения полной флуидизации порошка постепенно уменьшать скорость течения, то при полной остановке тока газа слой порошка останется в расширенном состоянии, для возвращения в первоначальное состояние его надо утрясти. Отсюда следует, что в расширенном слое контакт между частицами сохраняется.

Псевдоожижение газом — наиболее распространенный, способ получения псевдоожиженных систем, хотя существуют и другие способы.

Псевдоожиженный слой применяется очень широко:

• псевдоожижение в проточных системах «газ-твердое тело» часто применяют при нагревании и охлаждении, адсорбции, сушке и т. д.; при этом создаются оптимальные условия взаимодействия фаз;

• многочисленные химические процессы;

• получение гранулированных продуктов.

ГРАНУЛИРОВАНИЕ

Гранулирование (грануляция) — формирование твердых частиц (гранул) определенных размеров и формы с заданными свойствами.

Размер гранул зависит от вида материала, способа его дальнейшей переработки и применения и составляет обычно (в мм):

· для минеральных удобрений — 1-4;

· для термопластов — 2-5;

· для реактопластов — 0,2-1,0;

· для каучуков и резиновых смесей — 15-25;

· для лекарственных препаратов (таблетки) — 3—25.

Формирование гранул размером меньше 1 мм иногда называют микрогранулированием.

По своей природе гранулирование является процессом, обратным флуидизации и распылению. Гранулирование может быть основано на уплотнении порошкообразных материалов с использованием связующих или без них. Оно улучшает условия хранения веществ и транспортировки; позволяет механизировать и автоматизировать процессы последующего использования продуктов; повышает производительность и улучшает условия труда; снижает потери сырья и готовой продукции.

Важнейшими методами гранулирования являются сухое гранулирование, мокрое окатывание и прессование.

Сухое гранулирование.

При сухом гранулировании путем обкатывания в специальных вращающихся барабанах в порошкообразную массу вводят «зародыши» — мелкие плотные комочки того же вещества, что и порошок, или инородные (зерна растений, кристаллы сахара и т. д.), важно только, чтобы они не были намного тяжелее, чем вещество порошка. При обкатывании порошок как бы налипает на зародыши, и при этом образуются сферические гранулы. Число гранул обычно равно числу зародышей, и это позволяет, меняя соотношение между количеством порошка и зародышей, получать гранулы любого размера вплоть до 1-2 см в поперечнике, Важно отметить, что с увеличением соотношения «порошок-зародыши» снижается прочность гранул.

Установлено, что гранулирование идет наиболее эффективно при средней скорости обкатывания. При очень больших скоростях центробежная сила прижимает весь порошок к стенкам барабана и порошок не обкатывается. При очень малых скоростях не достигается вращательного движения порошка, при котором один слой, накатываясь на другой, обусловливает трение частиц, необходимое для гранулирования. Отдельные частицы порошка под действием молекулярных сил вступают во взаимодействие, образуя агрегаты. Причиной возникновения достаточно прочной связи между частицами может быть либо контакт частиц в особо активных участках, либо соприкосновение частиц плоскими гранями, в результате чего межмолекулярные силы действуют на сравнительно большой площади.

Страницы: 12 13 14 15 16 17 18 19 20 21

Информация о химии

Лоран (Laurent), Огюст

Огюст Лоран, выдающийся французский химик-органик, создатель «теории ядер», на основе которой была построена одна из систем классификации органических соединений, родился в Ла-Фоли 14 ноября 1807 г. В 1830 г. окончил П ...

Агрикола (Agricola), Георг

24 марта 1490 г. – 21 ноября 1555 г. Георг АгриколаНемецкий учёный в области горного дела и металлургии Георг Агрикола [настоящая фамилия Бауэр (Bauer); лат. agricola – земледелец, перевод немецкого слова Bauer] родил ...

Юри (Urey), Гарольд Клейтон

Американский химик Гарольд Клейтон Юри родился в Уолкертоне (штат Индиана), в семье Коры Ребекки (Рейноул) и Сэмуэла Клейтона Юри. Его отец, священник и школьный учитель, умер, когда мальчику было шесть лет, и мать Юри вышла замуж ...