Производство и переработка масличного сырья

Рефераты по химии / Производство и переработка масличного сырья
Страница 2

1. Наполнение, как метод модификации полимеров

В качестве наполнителей термо - и реактопластов чаще всего применяют твердые вещества: дисперсные (порошкообразные) или волокнистые в виде волокон, нитей, жгутов, холстов, нетканых материалов, тканей, бумаги, пленок, сеток, шпона. И композиционные материалы называют дисперсно-наполненными и волокноармированными.

В связи с эффектами, достигаемыми при введении наполнителей в полимерную матрицу, существует условное разделение наполнителей на активные, то есть усиливающие (в основном, улучшающие физико-механические свойства) и неактивные, и при введении которых происходит изменение цвета материала, снижается его стоимость, но не наблюдается заметного улучшения свойств материала.

По химической природе дисперсные наполнители подразделяют на:

- минеральные (неорганические)- мел, каолин, тальк, слюда,

-силикаты (асбест, вермикулит, пемза), порошки металлов или их сплавов и другие

-органические - древесная мука, мука из скорлупы орехов, сажа (технический углерод), кокс, графит и другие.

К неорганическим волокнистым наполнителям относят: стеклянные, борные, асбестовые волокна; волокна из кварца базальта, керамики, молибдена и вольфрама.

К природным органическим волокнам относят: хлопок, лен, джут, рами.

Химическими волокнами являются: полиамидное, полиэфирное, полиакрилонитрильное, вискозное, полиолефиновое (из полиэтилена и полипропилена), полиимидное, углеродное, стеклянное.

В зависимости от текстильной структуры волокнистых армирующих систем композиционные материалы на их основе подразделяют на волокиты (холсты, маты), текстолиты (ткани), гетинаксы (бумага).

В зависимости от химической природы наполнителей композиционные материалы подразделяют на: стеклопластики, асбопластики (асбест), древесно-слоистые пластики (древесный шпон), органопласты (химические, кроме стеклянного или природные волокна), углепластики (углеродные волокна), боропласты (борные волокна).

По величине свободной поверхностной энергии наполнители бывают: с высокой энергией поверхности (металлы, оксиды металлов и другие неорганические наполнители); низкой (полимерные волокна и дисперсные органические наполнители).

Величина поверхностной энергии является важной характеристикой, поскольку характер межфазного взаимодействия зависит от соотношения величин поверхности энергии матрицы и наполнителя.[3]

Разнообразие наполнителей, рекомендуемых многочисленными продуцентами для производства современных композиционных материалов, нередко затрудняет их выбор.

Отсутствие единой системы показателей качества наполнителей, а также использование различных стандартов, методик и инструментальной базы измерений, усложняет потребителю принятие объективного решения при выборе подходящей марки наполнителя. Главная причина недоразумений в разночтении, приводимых в технической или рекламной информациях, терминов, характеристик, показателей и методик их определения.

Используемые в настоящее время приборы для измерения размера частиц и плотности их распределения нередко дают значительные расхождения при измерении одних и тех же образцов. Это связано как с различными методами изме­рения (седиментационными, дифракционными, оптичес­кими и др.), так и особенностями приборов различных фирм, хотя и относящихся к одному типу (принципу измерения).

Предварительная специальная поверхностная обработка наполнителей не только облегчает процесс диспергирования, но создает благоприятные условия для физико-химического взаимодействия модифицированной поверхности наполнителя с полимером, обеспечивая в ряде случаев, существенное улучшение физико-механических свойств. Таким образом, повышение качества и конкурентоспособности современных композитов, наряду с использованием активных наполнителей, может быть существенно продвинуто за счёт использования наполнителей с органомодифицированной поверхностью, обеспечивающих оптимизацию свойств пластиков при производстве и переработке в изделия.[4]

Страницы: 1 2 3 4 5 6 7

Информация о химии

Хоуорт (Haworth), Уолтер Норман

Английский химик Уолтер Норман Хоуорт родился в маленьком городке Чорли (Ланкашир) и был вторым сыном и четвертым ребенком у Томаса и Ханны Хоуорт. Хоуорту пришлось прекратить посещать местную школу, когда ему еще не исполнилось 1 ...

Форма микролинз контролируется уровнем pH

Исследователи из Китая использовали обычный белок для создания оптических линз, диаметр которых составляет десятые доли микрометра. Фокусировка таких линз может изменяться просто за счет изменения значения pH окружающей среды. Ис ...

Xe — Ксенон

КСЕНОН (лат. Xenon), Xe, химический элемент VIII группы периодической системы, атомный номер 54, атомная масса 131,29, относится к инертным, или благородным, газам. Свойства: плотность 5,851 г/л, tкип 108,1 °С. Первый благоро ...