Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами

Рефераты по химии / Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами
Страница 44

Рассматривая влияние молекулярной массы полиэлектролитов, было обнаружено, что наибольшие скорости и степени осветления суспензии получены с использованием сополимера, имеющего промежуточное значение молекулярной массы. Образцы с меньшей и с большей молекулярной массой проявляют несколько пониженную активность.

Некоторое снижение скорости осветления и степени осветления с ростом молекулярной массы вероятно связано с влиянием диффузионных ограничений, которые влияют на распределение макромолекул по частицам дисперсии. Особенно эффект снижения эффективности осветления проявляется для сополимера с наиболее высокими значениями характеристической вязкости. Хотя скорость осветления для этих сополимеров выше в очень широком диапазоне концентраций, что указывает на формирование крупных флоккул, степень осветления не превышает 76 %.

Видимо, в системе остается достаточно большое количество несфлоккулированных частиц. Вероятно, по мере возрастания размеров макромолекул усиливаются стерические явления и затрудняется подход частиц с адсорбированными макромолекулами к свободной поверхности других частиц.

Причины невозможности флоккуляции в случае больших размеров макромолекул объяснены в работе [199]. Авторы отмечают, что при большом различии в размерах коллоидных частиц и макромолекул полимера флоккуляция вообще становится невозможной вследствие малой вероятности образования полимерных мостиков, что наглядно показано на рис. 28.

а) б)

Рис. 28. Влияние соотношения размеров макромолекул и коллоидных частиц на процесс флоккуляции: а) макромолекулы намного больше коллоидных частиц; б) коллоидные частицы намного больше макромолекул; h- статистический размер макромолекул, d-размер коллоидных частиц.

Таким образом, для флоккуляции необходимо, чтобы молекулы полимера и твердые частицы приближались друг к другу на расстояние, достаточное для осуществления адсорбции и образования полимерных мостиков.

Рис. 29. Зависимость оптической плотности суспензии каолина от времени отстаивания и концентрации сополимера состава 70:30

Рис. 30. Зависимость оптической плотности суспензии каолина

от времени отстаивания и состава флоккулянта

Сочетание высокой скорости осветления и наибольшей степени осаждения частиц достигается при использовании сополимера акриламида с метакрилатом гуанидина состава 70:30. Так в интервале доз полиэлектролита 0,05 – 0,12 масс.% максимальная эффективность осаждения составляет 95 – 96%. Оптимальные концентрации полиэлектролитов на основе сополимеров АА: МАГ, исходя из турбидиметрических кривых, составляют 0,5 – 1,0%.

Для изучения механизма образования флоккул и осадков необходимо использование методов, непосредственно характеризующих кинетическую и агрегативную устойчивость флоккулированных дисперсий. К таким методам относятся определение кинетических параметров осаждения дисперсий.

На рис. 31 представлены кинетические кривые осветления суспензии каолина с концентрацией 0,5 масс. %.

Рис.31 . Кинетические кривые осветления суспензии каолина

при введении 0,01 (кривая 1), 0,03 (кривая 2)

и 0,05 масс. % сополимера АА: МАГ (70:30).

Из рис. 31 видно, что резкое снижение мутности суспензии каолина проходит в течение 100-150 с. Этот период времени соответствует осаждению основного количества сформированных в ходе предварительного перемешивания флоккул. Далее оптическая плотность надосадочной жидкости снижается с меньшей скоростью. После осаждения в течение 500 – 600 с остаточная мутность не изменяется.

Начальные скорости осветления суспензии каолина закономерно повышаются при увеличении концентрации полиэлектролита. Скорость осветления в присутствии полимерных добавок выше в 3 – 4 раза, чем скорость осветления в отсутствие полимеров. Наибольшие значения скорости достигаются при дозах 0,05-0,10 мг/г.

Страницы: 39 40 41 42 43 44 45 46 47 48 49

Информация о химии

Mg — Магний

МАГНИЙ (лат. Magnesium), Mg (читается «магний»), химический элемент IIА группы третьего периода периодической системы Менделеева, атомный номер 12, атомная масса 24,305. Природный магний состоит из трех стабильных нукл ...

Bi — Висмут

ВИСМУТ (лат. Bismuthum), Bi (читается «висмут», до середины 20 века произносили «бисмут»), химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804. Серебристо-серый мета ...

One-pot синтез кандидатов в противоопухолевые препараты

Исследователи из Германии разработали простой, быстрый и протекающий с высоким выходом целевых продуктов каскадный синтез полициклических соединений, похожих по структуре на природные индолалкалоиды. Полученные соединения мешают д ...