Радиоактивный анализ

Рефераты по химии / Радиоактивный анализ
Страница 3

Основным недостатком активационного анализа является громоздкость источника нейтронов, а также нередко длительность самого процесса получения результатов.

2.3 Метод изотропного разбавления

Метод изотопного разбавления целесообразно применять для количественного определения близких по свойствам компонентов трудно разделяемых смесей В этом методе необходимо выделять не всё определяемое вещество, а лишь часть его в возможно более чистом состоянии. Метод изотопного разбавления открывает новые возможности в анализе сложных смесей и элементов, близких по своим химико-аналитическим свойствам. Например, при анализе смесей цирконий – гафний или ниобий – тантал можно получить чистый осадок одного из компонентов, но осаждение не будет полным. Если добиться полного осаждения, то полученный осадок будет загрязнен элементом-аналогом. В методе изотопного разбавления проводят неполное осаждение и, используя измерения активности, находят содержание анализируемого элемента с достаточной точностью. Аналогичный приём используется также при анализе различных смесей органических веществ.

2.4 Радиометрическое титрование

При радиометрическом титровании индикатором являются радиоактивные изотопы элементов. Например, при титровании фосфата магнием в анализируемый раствор вводят небольшое количество фосфата, содержащего радиоактивный P*.

Реакции радиометрического титрования должны удовлетворять требованиям, обычно предъявляемым к реакциям титриметрического анализа (скорость и полнота протекания реакции, постоянство состава продукта реакции и т. д.). Очевидным условием применимости реакции в данном методе является также переход продукта реакции из анализируемого раствора в другую фазу, с тем чтобы устранить помехи при определении активности раствора. Этой второй фазой часто является образующийся осадок. Известны методики, где продукт реакции экстрагируется органическим растворителем. Например, при титровании многих катионов дитизоном в качестве экстрагента применяют хлороформ или тетрахлорид углерода. Применение экстрагента позволяет более точно установить точку эквивалентности, так как в этом случае её определения можно измерять активность обеих фаз.

3. Практическое использование радионуклидов

В наши дни радионуклиды известны у большинства химических элементов. Они имеют много самых разных применений, особенно в химии и биохимии. Дело в том, что химическое поведение радионуклидов какого-либо элемента практически такое же, как и у его стабильных нуклидов. Но ядра радионуклидов в момент распада “посылают сигнал” о своём присутствии. Учёные разработали аппаратуру, позволяющую надёжно регистрировать сигналы от распада буквально единичных атомов. Благодаря этому становится возможным использовать радионуклиды в качестве атомов-меток, так называемых радиоактивных индикаторов.

Например, с помощью фосфора-32 можно установить, как кукуруза усваивает из почвы фосфорное удобрение. В удобрение добавляют очень малое количество радионуклида. Далее, анализируя радиоактивность различных частей растения, можно определить, быстро ли фосфат усваивает корни, с какой скоростью он поступает в листья, стебли или початки и как усвоение удобрения зависит от его химической формы ( в частности, от того, в виде какой именно соли – аммония, калия или кальция – взят фосфат), от способа введения в почву и других факторов. Полученная информация позволила существенно повысить эффективность применения минеральных удобрений.

Аналогичным образом на подопытных животных можно проследить действие лекарств, содержащих радиоактивные индикаторы. Использование радионуклидов позволяет наблюдать и за поведением различных микропримесей в технологических процессах.

Так как для установления природы радионуклидов достаточно буквально единичных атомов, по результатам исследования пряди волос Наполеона, сохранившейся до наших дней, удавалось выяснить, что в конце жизни его организм получал избыток мышьяка. Возможно, именно это и стало причинной болезни и смерти.

А вот чисто химическая проблема, которую помог решить радиоуглерод. При окислении пропионовой кислоты СН3СН2СООН в кислой среде образуются углекислый газ и шавелевая кислота НООС-СООН. Интересно было выяснить, какая именно из двух связей С-С в пропионовой кислоте разрушается при окислении. Для этого синтезировали пропионовую кислоту, содержащую метку 14С в карбоксильной группе. Затем провели окисление и определили активность выделившегося углекислого газа и активность шавеливой кислоты. Измерения показали, что эти значения относятся как 3:7. Следовательно, впропионовой кислоты рвутся обе связи, но с разной вероятностью.

Страницы: 1 2 3 4

Информация о химии

Ge — Германий

ГЕРМАНИЙ (лат. Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Свойства: серебристо-серые кристаллы; плотность 5,33 г/см3, tпл 938,3 °С. Название: назван от латинско ...

Теория флогистона

В сочинениях химиков второй половины 17 в. большое внимание уделялось толкованиям процесса горения. По представлениям древних греков, все, что способно гореть, содержит в себе элемент огня, который высвобождается при соответствующ ...

Этапы формирования системы понятий об окислительно-восстановительных реакциях

  Развитие представлений об окислительно-восстановительных реакциях (ОВР) в школьном курсе химии проходит через несколько этапов [13] , которые тесно связаны с формированием системы понятий о химических реакциях. I э ...