Электрохимические процессы. Электролиз расплавов и растворов электролитов. Инертные и растворимые электроды. Законы Фарадея

Рефераты по химии / Общая и неорганическая химия / Электрохимические процессы. Электролиз расплавов и растворов электролитов. Инертные и растворимые электроды. Законы Фарадея
Страница 5

На практике электроды классифицируют по химической природе материала (металлические, неметаллические, оксидные, электроды из соединений с ковалентной связью, углеграфитовые и т.д.), форме (сферические, плоские, цилиндрические, дисковые и т. д.), условиям функционирования (неподвижные, вращающиеся и т. п.), размерам (микро- и ультрамикроэлектроды), пористости, гидрофильности, участию электродного материала в электродном процессе (расходуемые и нерасходуемые) и др. признакам. Использование капельного ртутного электрода лежит в основе полярографии. Вращающийся дисковый электродпредставляет интерес как система, для которой существует строгое решение диффузионной кинетической задачи. К особо практически важным электродам следует отнести каталитически активные и высоко коррозионностойкие оксидные рутениево-титановые аноды (ОРТА), применение которых революционизировало самое широкомасштабное электрохимическое производство - электролитическое получение хлора и щелочей.

Модифицирование электродов, получившее широкое распространение в электрокатализе, производстве химических источников тока, электрохимических сенсоров и т. п., основано как на физических (ионная имплантация, разрыхление поверхности, выращивание монокристаллических граней, создание монокристаллических структур, физическая адсорбция ионов и молекул и др.), так и химических методах. В частности, химически модифицированные электроды представляют собой проводящий или полупроводниковый материал, покрытый мономолекулярными (в т. ч. субатомными), полимолекулярными, ионными, полимерными слоями, в результате чего электроды проявляет химические, электрохимические и/или оптические свойства слоя. Химическое модифицирование достигается хемосорбцией на поверхности электроды ионов и молекул, ковалентным связыванием различных агентов с поверхностными атомными группами, покрытием поверхности органическими, металлорганическими или неорганическими полимерными слоями, созданием композитов из электродного материала и вещества - модификатора.

Микроэлектроды имеют по крайней мере один из размеров настолько малый, что свойства электроды оказываются размернозависимыми. Размеры микроэлектродов лежат в интервале 0,1-50 мкм, минимальная площадь составляет 10-14 м2 (ультрамикроэлектроды), тогда как в большинстве электроаналитических экспериментов применяют электроды с площадью 5 х 10-5м2, в лабораторном электросинтезе - 10-2 м2, Осн. преимущество микроэлектродов - возможность снизить с их помощью диффузионные ограничения скорости электродного процесса и, следовательно, изучать кинетику очень быстрых электродных реакций. Из-за малой величины токов электрохимической ячейки с микроэлектродами характеризуются незначительным омическим падением потенциала, что позволяет изучать системы с высокими концентрациями реагирующих частиц, обычно используемые в технологических процессах, применять высокие скорости сканирования потенциала при вольтамперометрических измерениях, проводить работы в плохо проводящих средах и т. п. Микроэлектроды используют для анализа ультрамалых проб, исследования процессов в живых организмах, в клинических целях. Ультрамикроэлектроды применяют в туннельной сканирующей микроскопии и в электрохимической нанотехнологии.

Страницы: 1 2 3 4 5 

Информация о химии

Гармалин

Синонимы: дигидрогармин Внешний вид: ромбические кристаллы Брутто-формула (система Хилла): C13H14N2O Молекулярная масса (в а.е.м.): 214,26 Температура плавления (в °C): 238 Растворимость (в г/100 г или характеристика): ...

Ge — Германий

ГЕРМАНИЙ (лат. Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Свойства: серебристо-серые кристаллы; плотность 5,33 г/см3, tпл 938,3 °С. Название: назван от латинско ...

Карле (Karle), Джером

Американский химик Джером Карле родился в Нью-Йорке, в семье Луиса Карле и Сэйди (Кан) Карфанкл. Он вырос в Бруклине и окончил там в 1933 г. среднюю школу Авраама Линкольна. Потом Карле учился в нью-йоркском Сити-колледже, где поз ...