Электрохимические процессы. Гальванический элемент. ЭДС гальванического элемента и его измерение

Рефераты по химии / Общая и неорганическая химия / Электрохимические процессы. Гальванический элемент. ЭДС гальванического элемента и его измерение
Страница 2

H2(г) H2(Pt) 2H(Pt) 2H+ +2e(Pt)

Потенциал этого равновесия в указанных условиях принят равным нулю при любых температурах.

Табличные значения стандартных электродных потенциалов (Eo) приведены относительно обратимого водородного электрода. Эти значения нормированы на один электрон и их относят к процессу восстановления: Ox + ne =Red

В практических работах в качестве электрода сравнения чаще, чем водородный, используют хлорсеребряный электрод. Хлорсеребряный электрод представляет собой серебряную проволоку, электролитически покрытую AgCl, помещенную в насыщенный раствор KCl.

Стандартные электродные потенциалы металлов и водорода, расположенные в порядке их возрастания, составляют ряд стандартных электродных потенциалов металлов, или электрохимический ряд напряжений металлов. Ряд электродных потенциалов дает полезные знания:

1.Металлы, имеющие значения электродного потенциала меньше, чем у водорода, могут растворяться с выделением водорода в кислотах, анионы которых не являются окислителями.

2.Металлы, имеющие большее, чем у водорода, значение стандартного электродного потенциала могут встречаться в природе в самородном виде.

3.Металлы, имеющие меньшее значение электродного потенциала могут вытеснять металлы с большим значением электродного потенциала из растворов их солей.

4.Металлы, имеющие электродный потенциал меньше, чем потенциал реакции

2H2O + 2e = H2 + 2OH- Eo = –0,83В

в стандартных условиях могут растворяться в воде с выделением водорода.

Под гальваническим элементом понимают единичные ячейки химических источников тока, предназначенных для однократного электрического разряда. Гальванический элемент представляет собой два электрода различной природы и электролит. Максимальная разность потенциалов этих электродов в отсутствие электрического тока называется электродвижущей силой (э.д.с.) гальванического элемента. Э.д.с. может быть рассчитана как разность равновесных потенциалов этих электродов.

Для гальванического элемента, составленного из железного и медного электродов э.д.с. будет равна:

Fe 2+ + 2e =Fe Eo= –0,44

Cu 2+ +2e=Cu Eo=+0,34

э.д.с. =+ 0,34 – ( –0,44) =0,77В,. Электродный потенциал. Уравнение Нернста

ЭДС гальванического элемента E удобно представлять в виде разности некоторых величин, характеризующих каждый из электродов – электродных потенциалов; однако для точного определения этих величин необходима точка отсчета – точно известный электродный потенциал какого-либо электрода. Электродным потенциалом электрода еэ называется ЭДС элемента, составленного из данного электрода и стандартного водородного электрода (см. ниже), электродный потенциал которого принят равным нулю. При этом знак электродного потенциала считают положительным, если в таком гальваническом элементе испытуемый электрод является катодом, и отрицательным, если испытуемый электрод является анодом. Необходимо отметить, что иногда электродный потенциал определяют как "разность потенциалов на границе электрод – раствор", т.е. считают его тождественным потенциалу ДЭС, что не вполне правильно (хотя эти величины взаимосвязаны).

Величина электродного потенциала металлического электрода зависит от температуры и активности (концентрации) иона металла в растворе, в который опущен электрод; математически эта зависимость выражается уравнением Нернста (здесь F – постоянная Фарадея, z – заряд иона):

(III.40)

В уравнении Нернста е° – стандартный электродный потенциал, равный потенциалу электрода при активности иона металла, равной 1 моль/л. Стандартные электродные потенциалы электродов в водных растворах составляют ряд напряжений. Величина е° есть мера способности окисленной формы элемента или иона принимать электроны, т.е. восстанавливаться. Иногда различием между концентрацией и активностью иона в растворе пренебрегают, и в уравнении Нернста под знаком логарифма фигурирует концентрация ионов в растворе. Величина электродного потенциала определяет направление процесса, протекающего на электроде при работе гальванического элемента. На полуэлементе, электродный потенциал которого имеет большее (иногда говорят – более положительное) значение, будет протекать процесс восстановления, т.е. данный электрод будет являться катодом.

Рассмотрим расчёт ЭДС элемента Даниэля-Якоби с помощью уравнения Нернста. ЭДС всегда является положительной величиной и равна разности электродных потенциалов катода и анода:

(III.41)

(III.42)

Страницы: 1 2 3

Информация о химии

Пастер (Pasteur), Луи

Французский микробиолог и химик Луи Пастер родился в Доле (Юра, Франция). В 1847 г. он окончил Высшую нормальную школу в Париже, в 1848 г. защитил докторскую диссертацию. Преподавал естественные науки в Дижоне (1847–1848), б ...

Ds — Дармштадтий

ДАРМШТАДТИЙ (Дармштаттий) — (лат. Darmstadtium, бывший унуннилий (ununnilium)), Ds, химический элемент VIII группы периодической системы, атомный номер 110, атомная масса [271], наиболее устойчивый изотоп 271Ds. Свойства: р ...

Хауптман (Hauptman), Херберт Аарон

Американский биофизик Херберт Аарон Хауптман родился в Нью-Йорке в семье Израиля и Лич (в девичестве Розенфельд) Хауптман. Он вырос в Бронксе и получил среднее образование в школе Трунсенда Харриса, которую окончил в 1933 г. Углуб ...