Разгадана тайна сернокислотного аккумулятора
Новости / Разгадана тайна сернокислотного аккумулятора
Химики смогли разгадать загадку, которой более полутора веков – благодаря чему свинцово-сернокислотные аккумуляторы, которые можно найти под капотом большинства автомобилей, обладают столь уникальной способностью обеспечивать высокую силу тока.
Свинцово-сернокислотные аккумуляторы способны создавать значительную силу тока, необходимую для запуска двигателя автомобиля, благодаря исключительно высокой электропроводности материала, из которого изготовлен анод аккумулятора – диоксида свинца (PbО2). Тем не менее, еще с момента изобретения свинцово-сернокислотного аккумулятора в 1859 году до недавнего времени фундаментальные причины, лежащие в основе высокой электропроводности диоксида свинца, не были понятны исследователям.

Химики смогли разгадать загадку, которой более полутора веков – благодаря чему свинцово-сернокислотные аккумуляторы, которые можно найти под капотом большинства автомобилей, обладают столь уникальной способностью обеспечивать высокую силу тока.
Группа исследователей из Оксфордского Университета, Университета Бата и Колледжа Св. Троицы в Дублине полагает, что им, наконец, впервые удалось объяснить фундаментальные причины, лежащие в основе высокой электропроводности диоксида свинца.
Руководитель исследования, профессор Расс Эгделл (Russ Egdell) из Оксфорда заявляет, что способность свинцово-сернокислотного аккумулятора создавать силу тока, превышающую 100 А, необходимую для запуска стартера автомобиля, главным образом определяется тем фактом, что диоксид свинца, накапливающий химическую энергию в аноде аккумулятора, отличается высоким значением электропроводности, что позволяет при первой необходимости создавать ток с большой силой, однако причина электропроводности диоксида свинца до настоящего времени оставалась предметом многочисленных дискуссий – другие оксиды металлов с подобным строением (например, диоксид титана) не проводят электрический ток.
Квантово-химические исследования с помощью гибридного метода функционала плотности наряду с изучением анодного материала свинцово-сернокислотного аккумулятора с помощью метода нейтронной дифракции позволило определить, что хотя сам по себе диоксид свинца и представляет собой полупроводник с очень небольшим значением запрещенной зоны с непрямыми переходами (около 0.2 эВ), он приобретает черты материала с электронной проводимостью при потере его кристаллической решеткой атомов кислорода.
Исследователи предполагают, что обнаруженная ими закономерность может оказаться важной информацией, которая поможет при практической разработке новых перспективных материалов для анодов и катодов источников электроэнергии нового поколения.
Информация о химии
Уилкинсон (Wilkinson), Джеффри
Джефри УилкинсонАнглийский химик Джефри Уилкинсон родился в Спрингсайде, неподалеку от Манчестера, в семье Генри Уилкинсона, специалиста по отделке домов и декоратора, и Рут Уилкинсон, происходившей из семьи фермеров и ткачей. У н ...
Липском (Lipscomb), Уильям Нанн
Американский физикохимик Уильям Нанн Липскомб родился в Кливленде (штат Огайо), в семье Эдны (Портер) Липскомб и Уильяма Н. Липскомба. Через год после его рождения семья переехала в Лексингтон (штат Кентукки). По окончании средней ...
U — Уран
УРАН (лат. Uranium), U, химический элемент III группы периодической системы Менделеева, атомный номер 92, атомная масса 238,0289, относится к актиноидам. Свойства: радиоактивен, наиболее устойчивый изотоп 238U (период полураспада ...
